ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem3 Unicode version

Theorem prarloclem3 7269
Description: Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7275. (Contributed by Jim Kingdon, 27-Oct-2019.)
Assertion
Ref Expression
prarloclem3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Distinct variable groups:    A, j, y   
j, L, y    P, j, y    U, j, y   
y, X
Allowed substitution hint:    X( j)

Proof of Theorem prarloclem3
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 503 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  X  e.  om )
2 simpll 501 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  <. L ,  U >.  e. 
P. )
3 simplr 502 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  A  e.  L )
4 simprr 504 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  P  e.  Q. )
5 oveq2 5748 . . . . . . . . . . . . . 14  |-  ( x  =  X  ->  (
( y  +o  2o )  +o  x )  =  ( ( y  +o  2o )  +o  X
) )
65opeq1d 3679 . . . . . . . . . . . . 13  |-  ( x  =  X  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( y  +o  2o )  +o  X ) ,  1o >. )
76eceq1d 6431 . . . . . . . . . . . 12  |-  ( x  =  X  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  )
87oveq1d 5755 . . . . . . . . . . 11  |-  ( x  =  X  ->  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
)  =  ( [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  .Q  P ) )
98oveq2d 5756 . . . . . . . . . 10  |-  ( x  =  X  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) ) )
109eleq1d 2184 . . . . . . . . 9  |-  ( x  =  X  ->  (
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
1110anbi2d 457 . . . . . . . 8  |-  ( x  =  X  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
1211rexbidv 2413 . . . . . . 7  |-  ( x  =  X  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
1312imbi1d 230 . . . . . 6  |-  ( x  =  X  ->  (
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
1413imbi2d 229 . . . . 5  |-  ( x  =  X  ->  (
( ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e.  Q. )  ->  ( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  A  e.  L  /\  P  e.  Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) ) )
15 oveq2 5748 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( ( y  +o  2o )  +o  x )  =  ( ( y  +o  2o )  +o  (/) ) )
1615opeq1d 3679 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. )
1716eceq1d 6431 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  )
1817oveq1d 5755 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P
) )
1918oveq2d 5756 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) ) )
2019eleq1d 2184 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. (
( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
2120anbi2d 457 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
2221rexbidv 2413 . . . . . . 7  |-  ( x  =  (/)  ->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
2322imbi1d 230 . . . . . 6  |-  ( x  =  (/)  ->  ( ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
24 oveq2 5748 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( y  +o  2o )  +o  x )  =  ( ( y  +o  2o )  +o  z
) )
2524opeq1d 3679 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( y  +o  2o )  +o  z ) ,  1o >. )
2625eceq1d 6431 . . . . . . . . . . . 12  |-  ( x  =  z  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  )
2726oveq1d 5755 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
)  =  ( [
<. ( ( y  +o  2o )  +o  z
) ,  1o >. ]  ~Q  .Q  P ) )
2827oveq2d 5756 . . . . . . . . . 10  |-  ( x  =  z  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) ) )
2928eleq1d 2184 . . . . . . . . 9  |-  ( x  =  z  ->  (
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  z
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
3029anbi2d 457 . . . . . . . 8  |-  ( x  =  z  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
3130rexbidv 2413 . . . . . . 7  |-  ( x  =  z  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
3231imbi1d 230 . . . . . 6  |-  ( x  =  z  ->  (
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
33 oveq2 5748 . . . . . . . . . . . . . 14  |-  ( x  =  suc  z  -> 
( ( y  +o  2o )  +o  x
)  =  ( ( y  +o  2o )  +o  suc  z ) )
3433opeq1d 3679 . . . . . . . . . . . . 13  |-  ( x  =  suc  z  ->  <. ( ( y  +o  2o )  +o  x
) ,  1o >.  = 
<. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. )
3534eceq1d 6431 . . . . . . . . . . . 12  |-  ( x  =  suc  z  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. ]  ~Q  )
3635oveq1d 5755 . . . . . . . . . . 11  |-  ( x  =  suc  z  -> 
( [ <. (
( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )
3736oveq2d 5756 . . . . . . . . . 10  |-  ( x  =  suc  z  -> 
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  =  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. ]  ~Q  .Q  P
) ) )
3837eleq1d 2184 . . . . . . . . 9  |-  ( x  =  suc  z  -> 
( ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
3938anbi2d 457 . . . . . . . 8  |-  ( x  =  suc  z  -> 
( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
4039rexbidv 2413 . . . . . . 7  |-  ( x  =  suc  z  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
4140imbi1d 230 . . . . . 6  |-  ( x  =  suc  z  -> 
( ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
42 2onn 6383 . . . . . . . . . . . . . . . . 17  |-  2o  e.  om
43 nnacl 6342 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  om  /\  2o  e.  om )  -> 
( y  +o  2o )  e.  om )
44 nna0 6336 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +o  2o )  e.  om  ->  (
( y  +o  2o )  +o  (/) )  =  ( y  +o  2o ) )
4543, 44syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  om  /\  2o  e.  om )  -> 
( ( y  +o  2o )  +o  (/) )  =  ( y  +o  2o ) )
4642, 45mpan2 419 . . . . . . . . . . . . . . . 16  |-  ( y  e.  om  ->  (
( y  +o  2o )  +o  (/) )  =  ( y  +o  2o ) )
4746opeq1d 3679 . . . . . . . . . . . . . . 15  |-  ( y  e.  om  ->  <. (
( y  +o  2o )  +o  (/) ) ,  1o >.  =  <. ( y  +o  2o ) ,  1o >. )
4847eceq1d 6431 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  =  [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  )
4948oveq1d 5755 . . . . . . . . . . . . 13  |-  ( y  e.  om  ->  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )
5049oveq2d 5756 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P
) )  =  ( A  +Q  ( [
<. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) ) )
5150eleq1d 2184 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. (
y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
5251anbi2d 457 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  <-> 
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
5352rexbiia 2425 . . . . . . . . 9  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
54 opeq1 3673 . . . . . . . . . . . . . . 15  |-  ( y  =  j  ->  <. y ,  1o >.  =  <. j ,  1o >. )
5554eceq1d 6431 . . . . . . . . . . . . . 14  |-  ( y  =  j  ->  [ <. y ,  1o >. ] ~Q0  =  [ <. j ,  1o >. ] ~Q0  )
5655oveq1d 5755 . . . . . . . . . . . . 13  |-  ( y  =  j  ->  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )  =  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )
5756oveq2d 5756 . . . . . . . . . . . 12  |-  ( y  =  j  ->  ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  =  ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
) )
5857eleq1d 2184 . . . . . . . . . . 11  |-  ( y  =  j  ->  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  <->  ( A +Q0  ( [
<. j ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L ) )
59 oveq1 5747 . . . . . . . . . . . . . . . 16  |-  ( y  =  j  ->  (
y  +o  2o )  =  ( j  +o  2o ) )
6059opeq1d 3679 . . . . . . . . . . . . . . 15  |-  ( y  =  j  ->  <. (
y  +o  2o ) ,  1o >.  =  <. ( j  +o  2o ) ,  1o >. )
6160eceq1d 6431 . . . . . . . . . . . . . 14  |-  ( y  =  j  ->  [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  =  [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  )
6261oveq1d 5755 . . . . . . . . . . . . 13  |-  ( y  =  j  ->  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
)  =  ( [
<. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )
6362oveq2d 5756 . . . . . . . . . . . 12  |-  ( y  =  j  ->  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) ) )
6463eleq1d 2184 . . . . . . . . . . 11  |-  ( y  =  j  ->  (
( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
6558, 64anbi12d 462 . . . . . . . . . 10  |-  ( y  =  j  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
6665cbvrexv 2630 . . . . . . . . 9  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
6753, 66bitri 183 . . . . . . . 8  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  <->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
6867biimpi 119 . . . . . . 7  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
6968a1i 9 . . . . . 6  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  L  /\  P  e.  Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
70 prarloclem3step 7268 . . . . . . . . 9  |-  ( ( ( z  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
7170ex 114 . . . . . . . 8  |-  ( ( z  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
7271imim1d 75 . . . . . . 7  |-  ( ( z  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
7372ex 114 . . . . . 6  |-  ( z  e.  om  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. )  ->  (
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) ) )
7423, 32, 41, 69, 73finds2 4483 . . . . 5  |-  ( x  e.  om  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
7514, 74vtoclga 2724 . . . 4  |-  ( X  e.  om  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
7675imp 123 . . 3  |-  ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
771, 2, 3, 4, 76syl13anc 1201 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
78773impia 1161 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314    e. wcel 1463   E.wrex 2392   (/)c0 3331   <.cop 3498   suc csuc 4255   omcom 4472  (class class class)co 5740   1oc1o 6272   2oc2o 6273    +o coa 6276   [cec 6393    ~Q ceq 7051   Q.cnq 7052    +Q cplq 7054    .Q cmq 7055   ~Q0 ceq0 7058   +Q0 cplq0 7061   ·Q0 cmq0 7062   P.cnp 7063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-eprel 4179  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-1o 6279  df-2o 6280  df-oadd 6283  df-omul 6284  df-er 6395  df-ec 6397  df-qs 6401  df-ni 7076  df-pli 7077  df-mi 7078  df-lti 7079  df-plpq 7116  df-mpq 7117  df-enq 7119  df-nqqs 7120  df-plqqs 7121  df-mqqs 7122  df-ltnqqs 7125  df-enq0 7196  df-nq0 7197  df-plq0 7199  df-mq0 7200  df-inp 7238
This theorem is referenced by:  prarloclem4  7270
  Copyright terms: Public domain W3C validator