ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord Unicode version

Theorem monoord 10556
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
monoord.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
monoord.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
monoord.3  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
Assertion
Ref Expression
monoord  |-  ( ph  ->  ( F `  M
)  <_  ( F `  N ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem monoord
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monoord.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10098 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2256 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5554 . . . . . . 7  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
65breq2d 4041 . . . . . 6  |-  ( x  =  M  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  M )
) )
74, 6imbi12d 234 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( M  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  M )
) ) )
87imbi2d 230 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  M )
) ) ) )
9 eleq1 2256 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
10 fveq2 5554 . . . . . . 7  |-  ( x  =  n  ->  ( F `  x )  =  ( F `  n ) )
1110breq2d 4041 . . . . . 6  |-  ( x  =  n  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  n )
) )
129, 11imbi12d 234 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
) ) )
1312imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  n )
) ) ) )
14 eleq1 2256 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
15 fveq2 5554 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
1615breq2d 4041 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
1714, 16imbi12d 234 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( ( n  +  1 )  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
1817imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) ) )
19 eleq1 2256 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
20 fveq2 5554 . . . . . . 7  |-  ( x  =  N  ->  ( F `  x )  =  ( F `  N ) )
2120breq2d 4041 . . . . . 6  |-  ( x  =  N  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  N )
) )
2219, 21imbi12d 234 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( N  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  N )
) ) )
2322imbi2d 230 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) ) ) )
24 fveq2 5554 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2524eleq1d 2262 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  RR  <->  ( F `  M )  e.  RR ) )
26 monoord.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
2726ralrimiva 2567 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  RR )
28 eluzfz1 10097 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
291, 28syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ( M ... N ) )
3025, 27, 29rspcdva 2869 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  RR )
3130leidd 8533 . . . . . 6  |-  ( ph  ->  ( F `  M
)  <_  ( F `  M ) )
3231a1d 22 . . . . 5  |-  ( ph  ->  ( M  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  M )
) )
3332a1i 9 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  M )
) ) )
34 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
35 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
36 peano2fzr 10103 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
3734, 35, 36syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
3837expr 375 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
3938imim1d 75 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  n )
) ) )
40 fveq2 5554 . . . . . . . . . . . 12  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
41 oveq1 5925 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
4241fveq2d 5558 . . . . . . . . . . . 12  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
4340, 42breq12d 4042 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( F `  k
)  <_  ( F `  ( k  +  1 ) )  <->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) ) )
44 monoord.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
4544ralrimiva 2567 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  k
)  <_  ( F `  ( k  +  1 ) ) )
4645adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
47 eluzelz 9601 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
4834, 47syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ZZ )
49 elfzuz3 10088 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
5035, 49syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
51 eluzp1m1 9616 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  N  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  n ) )
5248, 50, 51syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  n )
)
53 elfzuzb 10085 . . . . . . . . . . . 12  |-  ( n  e.  ( M ... ( N  -  1
) )  <->  ( n  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  n ) ) )
5434, 52, 53sylanbrc 417 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... ( N  -  1 ) ) )
5543, 46, 54rspcdva 2869 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) )
5630adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  M )  e.  RR )
5740eleq1d 2262 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
5827adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  e.  RR )
5957, 58, 37rspcdva 2869 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  n )  e.  RR )
60 fveq2 5554 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
6160eleq1d 2262 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( n  +  1 ) )  e.  RR ) )
6261, 58, 35rspcdva 2869 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
63 letr 8102 . . . . . . . . . . 11  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  n )  e.  RR  /\  ( F `  ( n  +  1 ) )  e.  RR )  -> 
( ( ( F `
 M )  <_ 
( F `  n
)  /\  ( F `  n )  <_  ( F `  ( n  +  1 ) ) )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
6456, 59, 62, 63syl3anc 1249 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
( F `  M
)  <_  ( F `  n )  /\  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) )
6555, 64mpan2d 428 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( ( F `  M )  <_  ( F `  n
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
6665expr 375 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (
( F `  M
)  <_  ( F `  n )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) ) )
6766a2d 26 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( n  +  1 )  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
6839, 67syld 45 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
6968expcom 116 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) ) ) )
7069a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
) )  ->  ( ph  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) ) )
718, 13, 18, 23, 33, 70uzind4 9653 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) ) )
721, 71mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) )
733, 72mpd 13 1  |-  ( ph  ->  ( F `  M
)  <_  ( F `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   RRcr 7871   1c1 7873    + caddc 7875    <_ cle 8055    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  monoord2  10557  ser3mono  10558  climub  11487
  Copyright terms: Public domain W3C validator