ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord Unicode version

Theorem monoord 10402
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
monoord.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
monoord.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
monoord.3  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
Assertion
Ref Expression
monoord  |-  ( ph  ->  ( F `  M
)  <_  ( F `  N ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem monoord
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monoord.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9958 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2227 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5481 . . . . . . 7  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
65breq2d 3989 . . . . . 6  |-  ( x  =  M  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  M )
) )
74, 6imbi12d 233 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( M  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  M )
) ) )
87imbi2d 229 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  M )
) ) ) )
9 eleq1 2227 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
10 fveq2 5481 . . . . . . 7  |-  ( x  =  n  ->  ( F `  x )  =  ( F `  n ) )
1110breq2d 3989 . . . . . 6  |-  ( x  =  n  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  n )
) )
129, 11imbi12d 233 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
) ) )
1312imbi2d 229 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  n )
) ) ) )
14 eleq1 2227 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
15 fveq2 5481 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
1615breq2d 3989 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
1714, 16imbi12d 233 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( ( n  +  1 )  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
1817imbi2d 229 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) ) )
19 eleq1 2227 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
20 fveq2 5481 . . . . . . 7  |-  ( x  =  N  ->  ( F `  x )  =  ( F `  N ) )
2120breq2d 3989 . . . . . 6  |-  ( x  =  N  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  N )
) )
2219, 21imbi12d 233 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( N  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  N )
) ) )
2322imbi2d 229 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) ) ) )
24 fveq2 5481 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2524eleq1d 2233 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  RR  <->  ( F `  M )  e.  RR ) )
26 monoord.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
2726ralrimiva 2537 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  RR )
28 eluzfz1 9957 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
291, 28syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ( M ... N ) )
3025, 27, 29rspcdva 2831 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  RR )
3130leidd 8404 . . . . . 6  |-  ( ph  ->  ( F `  M
)  <_  ( F `  M ) )
3231a1d 22 . . . . 5  |-  ( ph  ->  ( M  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  M )
) )
3332a1i 9 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  M )
) ) )
34 simprl 521 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
35 simprr 522 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
36 peano2fzr 9963 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
3734, 35, 36syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
3837expr 373 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
3938imim1d 75 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  n )
) ) )
40 fveq2 5481 . . . . . . . . . . . 12  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
41 oveq1 5844 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
4241fveq2d 5485 . . . . . . . . . . . 12  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
4340, 42breq12d 3990 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( F `  k
)  <_  ( F `  ( k  +  1 ) )  <->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) ) )
44 monoord.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
4544ralrimiva 2537 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  k
)  <_  ( F `  ( k  +  1 ) ) )
4645adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
47 eluzelz 9467 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
4834, 47syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ZZ )
49 elfzuz3 9949 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
5035, 49syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
51 eluzp1m1 9481 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  N  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  n ) )
5248, 50, 51syl2anc 409 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  n )
)
53 elfzuzb 9946 . . . . . . . . . . . 12  |-  ( n  e.  ( M ... ( N  -  1
) )  <->  ( n  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  n ) ) )
5434, 52, 53sylanbrc 414 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... ( N  -  1 ) ) )
5543, 46, 54rspcdva 2831 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) )
5630adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  M )  e.  RR )
5740eleq1d 2233 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
5827adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  e.  RR )
5957, 58, 37rspcdva 2831 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  n )  e.  RR )
60 fveq2 5481 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
6160eleq1d 2233 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( n  +  1 ) )  e.  RR ) )
6261, 58, 35rspcdva 2831 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
63 letr 7973 . . . . . . . . . . 11  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  n )  e.  RR  /\  ( F `  ( n  +  1 ) )  e.  RR )  -> 
( ( ( F `
 M )  <_ 
( F `  n
)  /\  ( F `  n )  <_  ( F `  ( n  +  1 ) ) )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
6456, 59, 62, 63syl3anc 1227 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
( F `  M
)  <_  ( F `  n )  /\  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) )
6555, 64mpan2d 425 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( ( F `  M )  <_  ( F `  n
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
6665expr 373 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (
( F `  M
)  <_  ( F `  n )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) ) )
6766a2d 26 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( n  +  1 )  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
6839, 67syld 45 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
6968expcom 115 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) ) ) )
7069a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
) )  ->  ( ph  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) ) )
718, 13, 18, 23, 33, 70uzind4 9518 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) ) )
721, 71mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) )
733, 72mpd 13 1  |-  ( ph  ->  ( F `  M
)  <_  ( F `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   A.wral 2442   class class class wbr 3977   ` cfv 5183  (class class class)co 5837   RRcr 7744   1c1 7746    + caddc 7748    <_ cle 7926    - cmin 8061   ZZcz 9183   ZZ>=cuz 9458   ...cfz 9936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-addcom 7845  ax-addass 7847  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-0id 7853  ax-rnegex 7854  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-ltadd 7861
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-br 3978  df-opab 4039  df-mpt 4040  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-inn 8850  df-n0 9107  df-z 9184  df-uz 9459  df-fz 9937
This theorem is referenced by:  monoord2  10403  ser3mono  10404  climub  11275
  Copyright terms: Public domain W3C validator