Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inrab2 | Unicode version |
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
Ref | Expression |
---|---|
inrab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2453 | . . 3 | |
2 | abid2 2287 | . . . 4 | |
3 | 2 | eqcomi 2169 | . . 3 |
4 | 1, 3 | ineq12i 3321 | . 2 |
5 | df-rab 2453 | . . 3 | |
6 | inab 3390 | . . . 4 | |
7 | elin 3305 | . . . . . . 7 | |
8 | 7 | anbi1i 454 | . . . . . 6 |
9 | an32 552 | . . . . . 6 | |
10 | 8, 9 | bitri 183 | . . . . 5 |
11 | 10 | abbii 2282 | . . . 4 |
12 | 6, 11 | eqtr4i 2189 | . . 3 |
13 | 5, 12 | eqtr4i 2189 | . 2 |
14 | 4, 13 | eqtr4i 2189 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wcel 2136 cab 2151 crab 2448 cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-in 3122 |
This theorem is referenced by: iooval2 9851 fzval2 9947 dfphi2 12152 znnen 12331 |
Copyright terms: Public domain | W3C validator |