ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inrab2 Unicode version

Theorem inrab2 3432
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
Assertion
Ref Expression
inrab2  |-  ( { x  e.  A  |  ph }  i^i  B )  =  { x  e.  ( A  i^i  B
)  |  ph }
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem inrab2
StepHypRef Expression
1 df-rab 2481 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 abid2 2314 . . . 4  |-  { x  |  x  e.  B }  =  B
32eqcomi 2197 . . 3  |-  B  =  { x  |  x  e.  B }
41, 3ineq12i 3358 . 2  |-  ( { x  e.  A  |  ph }  i^i  B )  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B }
)
5 df-rab 2481 . . 3  |-  { x  e.  ( A  i^i  B
)  |  ph }  =  { x  |  ( x  e.  ( A  i^i  B )  /\  ph ) }
6 inab 3427 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B } )  =  {
x  |  ( ( x  e.  A  /\  ph )  /\  x  e.  B ) }
7 elin 3342 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
87anbi1i 458 . . . . . 6  |-  ( ( x  e.  ( A  i^i  B )  /\  ph )  <->  ( ( x  e.  A  /\  x  e.  B )  /\  ph ) )
9 an32 562 . . . . . 6  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  /\  x  e.  B ) )
108, 9bitri 184 . . . . 5  |-  ( ( x  e.  ( A  i^i  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  /\  x  e.  B
) )
1110abbii 2309 . . . 4  |-  { x  |  ( x  e.  ( A  i^i  B
)  /\  ph ) }  =  { x  |  ( ( x  e.  A  /\  ph )  /\  x  e.  B
) }
126, 11eqtr4i 2217 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B } )  =  {
x  |  ( x  e.  ( A  i^i  B )  /\  ph ) }
135, 12eqtr4i 2217 . 2  |-  { x  e.  ( A  i^i  B
)  |  ph }  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B }
)
144, 13eqtr4i 2217 1  |-  ( { x  e.  A  |  ph }  i^i  B )  =  { x  e.  ( A  i^i  B
)  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   {crab 2476    i^i cin 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-in 3159
This theorem is referenced by:  iooval2  9981  fzval2  10077  dfphi2  12358  znnen  12555
  Copyright terms: Public domain W3C validator