ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inrab2 Unicode version

Theorem inrab2 3354
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
Assertion
Ref Expression
inrab2  |-  ( { x  e.  A  |  ph }  i^i  B )  =  { x  e.  ( A  i^i  B
)  |  ph }
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem inrab2
StepHypRef Expression
1 df-rab 2426 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 abid2 2261 . . . 4  |-  { x  |  x  e.  B }  =  B
32eqcomi 2144 . . 3  |-  B  =  { x  |  x  e.  B }
41, 3ineq12i 3280 . 2  |-  ( { x  e.  A  |  ph }  i^i  B )  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B }
)
5 df-rab 2426 . . 3  |-  { x  e.  ( A  i^i  B
)  |  ph }  =  { x  |  ( x  e.  ( A  i^i  B )  /\  ph ) }
6 inab 3349 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B } )  =  {
x  |  ( ( x  e.  A  /\  ph )  /\  x  e.  B ) }
7 elin 3264 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
87anbi1i 454 . . . . . 6  |-  ( ( x  e.  ( A  i^i  B )  /\  ph )  <->  ( ( x  e.  A  /\  x  e.  B )  /\  ph ) )
9 an32 552 . . . . . 6  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  /\  x  e.  B ) )
108, 9bitri 183 . . . . 5  |-  ( ( x  e.  ( A  i^i  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  /\  x  e.  B
) )
1110abbii 2256 . . . 4  |-  { x  |  ( x  e.  ( A  i^i  B
)  /\  ph ) }  =  { x  |  ( ( x  e.  A  /\  ph )  /\  x  e.  B
) }
126, 11eqtr4i 2164 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B } )  =  {
x  |  ( x  e.  ( A  i^i  B )  /\  ph ) }
135, 12eqtr4i 2164 . 2  |-  { x  e.  ( A  i^i  B
)  |  ph }  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B }
)
144, 13eqtr4i 2164 1  |-  ( { x  e.  A  |  ph }  i^i  B )  =  { x  e.  ( A  i^i  B
)  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1332    e. wcel 1481   {cab 2126   {crab 2421    i^i cin 3075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rab 2426  df-v 2691  df-in 3082
This theorem is referenced by:  iooval2  9728  fzval2  9824  dfphi2  11932  znnen  11947
  Copyright terms: Public domain W3C validator