| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onintonm | Unicode version | ||
| Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| onintonm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . . . . . 7
| |
| 2 | eloni 4422 |
. . . . . . . 8
| |
| 3 | ordtr 4425 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl 14 |
. . . . . . 7
|
| 5 | 1, 4 | syl6 33 |
. . . . . 6
|
| 6 | 5 | ralrimiv 2578 |
. . . . 5
|
| 7 | trint 4157 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | 8 | adantr 276 |
. . 3
|
| 10 | nfv 1551 |
. . . . 5
| |
| 11 | nfe1 1519 |
. . . . 5
| |
| 12 | 10, 11 | nfan 1588 |
. . . 4
|
| 13 | intssuni2m 3909 |
. . . . . . . 8
| |
| 14 | unon 4559 |
. . . . . . . 8
| |
| 15 | 13, 14 | sseqtrdi 3241 |
. . . . . . 7
|
| 16 | 15 | sseld 3192 |
. . . . . 6
|
| 17 | 16, 2 | syl6 33 |
. . . . 5
|
| 18 | 17, 3 | syl6 33 |
. . . 4
|
| 19 | 12, 18 | ralrimi 2577 |
. . 3
|
| 20 | dford3 4414 |
. . 3
| |
| 21 | 9, 19, 20 | sylanbrc 417 |
. 2
|
| 22 | inteximm 4193 |
. . . 4
| |
| 23 | 22 | adantl 277 |
. . 3
|
| 24 | elong 4420 |
. . 3
| |
| 25 | 23, 24 | syl 14 |
. 2
|
| 26 | 21, 25 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 |
| This theorem is referenced by: onintrab2im 4566 |
| Copyright terms: Public domain | W3C validator |