ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintonm Unicode version

Theorem onintonm 4554
Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintonm  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  e.  On )
Distinct variable group:    x, A

Proof of Theorem onintonm
StepHypRef Expression
1 ssel 3178 . . . . . . 7  |-  ( A 
C_  On  ->  ( x  e.  A  ->  x  e.  On ) )
2 eloni 4411 . . . . . . . 8  |-  ( x  e.  On  ->  Ord  x )
3 ordtr 4414 . . . . . . . 8  |-  ( Ord  x  ->  Tr  x
)
42, 3syl 14 . . . . . . 7  |-  ( x  e.  On  ->  Tr  x )
51, 4syl6 33 . . . . . 6  |-  ( A 
C_  On  ->  ( x  e.  A  ->  Tr  x ) )
65ralrimiv 2569 . . . . 5  |-  ( A 
C_  On  ->  A. x  e.  A  Tr  x
)
7 trint 4147 . . . . 5  |-  ( A. x  e.  A  Tr  x  ->  Tr  |^| A )
86, 7syl 14 . . . 4  |-  ( A 
C_  On  ->  Tr  |^| A )
98adantr 276 . . 3  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  Tr  |^| A
)
10 nfv 1542 . . . . 5  |-  F/ x  A  C_  On
11 nfe1 1510 . . . . 5  |-  F/ x E. x  x  e.  A
1210, 11nfan 1579 . . . 4  |-  F/ x
( A  C_  On  /\ 
E. x  x  e.  A )
13 intssuni2m 3899 . . . . . . . 8  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  C_  U. On )
14 unon 4548 . . . . . . . 8  |-  U. On  =  On
1513, 14sseqtrdi 3232 . . . . . . 7  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  C_  On )
1615sseld 3183 . . . . . 6  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( x  e.  |^| A  ->  x  e.  On ) )
1716, 2syl6 33 . . . . 5  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( x  e.  |^| A  ->  Ord  x ) )
1817, 3syl6 33 . . . 4  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( x  e.  |^| A  ->  Tr  x ) )
1912, 18ralrimi 2568 . . 3  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  A. x  e.  |^| A Tr  x
)
20 dford3 4403 . . 3  |-  ( Ord  |^| A  <->  ( Tr  |^| A  /\  A. x  e. 
|^| A Tr  x
) )
219, 19, 20sylanbrc 417 . 2  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  Ord  |^| A
)
22 inteximm 4183 . . . 4  |-  ( E. x  x  e.  A  ->  |^| A  e.  _V )
2322adantl 277 . . 3  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  e. 
_V )
24 elong 4409 . . 3  |-  ( |^| A  e.  _V  ->  (
|^| A  e.  On  <->  Ord  |^| A ) )
2523, 24syl 14 . 2  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( |^| A  e.  On  <->  Ord  |^| A
) )
2621, 25mpbird 167 1  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1506    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157   U.cuni 3840   |^|cint 3875   Tr wtr 4132   Ord word 4398   Oncon0 4399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-tr 4133  df-iord 4402  df-on 4404  df-suc 4407
This theorem is referenced by:  onintrab2im  4555
  Copyright terms: Public domain W3C validator