ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintonm Unicode version

Theorem onintonm 4609
Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintonm  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  e.  On )
Distinct variable group:    x, A

Proof of Theorem onintonm
StepHypRef Expression
1 ssel 3218 . . . . . . 7  |-  ( A 
C_  On  ->  ( x  e.  A  ->  x  e.  On ) )
2 eloni 4466 . . . . . . . 8  |-  ( x  e.  On  ->  Ord  x )
3 ordtr 4469 . . . . . . . 8  |-  ( Ord  x  ->  Tr  x
)
42, 3syl 14 . . . . . . 7  |-  ( x  e.  On  ->  Tr  x )
51, 4syl6 33 . . . . . 6  |-  ( A 
C_  On  ->  ( x  e.  A  ->  Tr  x ) )
65ralrimiv 2602 . . . . 5  |-  ( A 
C_  On  ->  A. x  e.  A  Tr  x
)
7 trint 4197 . . . . 5  |-  ( A. x  e.  A  Tr  x  ->  Tr  |^| A )
86, 7syl 14 . . . 4  |-  ( A 
C_  On  ->  Tr  |^| A )
98adantr 276 . . 3  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  Tr  |^| A
)
10 nfv 1574 . . . . 5  |-  F/ x  A  C_  On
11 nfe1 1542 . . . . 5  |-  F/ x E. x  x  e.  A
1210, 11nfan 1611 . . . 4  |-  F/ x
( A  C_  On  /\ 
E. x  x  e.  A )
13 intssuni2m 3947 . . . . . . . 8  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  C_  U. On )
14 unon 4603 . . . . . . . 8  |-  U. On  =  On
1513, 14sseqtrdi 3272 . . . . . . 7  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  C_  On )
1615sseld 3223 . . . . . 6  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( x  e.  |^| A  ->  x  e.  On ) )
1716, 2syl6 33 . . . . 5  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( x  e.  |^| A  ->  Ord  x ) )
1817, 3syl6 33 . . . 4  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( x  e.  |^| A  ->  Tr  x ) )
1912, 18ralrimi 2601 . . 3  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  A. x  e.  |^| A Tr  x
)
20 dford3 4458 . . 3  |-  ( Ord  |^| A  <->  ( Tr  |^| A  /\  A. x  e. 
|^| A Tr  x
) )
219, 19, 20sylanbrc 417 . 2  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  Ord  |^| A
)
22 inteximm 4233 . . . 4  |-  ( E. x  x  e.  A  ->  |^| A  e.  _V )
2322adantl 277 . . 3  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  e. 
_V )
24 elong 4464 . . 3  |-  ( |^| A  e.  _V  ->  (
|^| A  e.  On  <->  Ord  |^| A ) )
2523, 24syl 14 . 2  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( |^| A  e.  On  <->  Ord  |^| A
) )
2621, 25mpbird 167 1  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1538    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   U.cuni 3888   |^|cint 3923   Tr wtr 4182   Ord word 4453   Oncon0 4454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462
This theorem is referenced by:  onintrab2im  4610
  Copyright terms: Public domain W3C validator