ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintonm Unicode version

Theorem onintonm 4428
Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintonm  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  e.  On )
Distinct variable group:    x, A

Proof of Theorem onintonm
StepHypRef Expression
1 ssel 3086 . . . . . . 7  |-  ( A 
C_  On  ->  ( x  e.  A  ->  x  e.  On ) )
2 eloni 4292 . . . . . . . 8  |-  ( x  e.  On  ->  Ord  x )
3 ordtr 4295 . . . . . . . 8  |-  ( Ord  x  ->  Tr  x
)
42, 3syl 14 . . . . . . 7  |-  ( x  e.  On  ->  Tr  x )
51, 4syl6 33 . . . . . 6  |-  ( A 
C_  On  ->  ( x  e.  A  ->  Tr  x ) )
65ralrimiv 2502 . . . . 5  |-  ( A 
C_  On  ->  A. x  e.  A  Tr  x
)
7 trint 4036 . . . . 5  |-  ( A. x  e.  A  Tr  x  ->  Tr  |^| A )
86, 7syl 14 . . . 4  |-  ( A 
C_  On  ->  Tr  |^| A )
98adantr 274 . . 3  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  Tr  |^| A
)
10 nfv 1508 . . . . 5  |-  F/ x  A  C_  On
11 nfe1 1472 . . . . 5  |-  F/ x E. x  x  e.  A
1210, 11nfan 1544 . . . 4  |-  F/ x
( A  C_  On  /\ 
E. x  x  e.  A )
13 intssuni2m 3790 . . . . . . . 8  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  C_  U. On )
14 unon 4422 . . . . . . . 8  |-  U. On  =  On
1513, 14sseqtrdi 3140 . . . . . . 7  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  C_  On )
1615sseld 3091 . . . . . 6  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( x  e.  |^| A  ->  x  e.  On ) )
1716, 2syl6 33 . . . . 5  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( x  e.  |^| A  ->  Ord  x ) )
1817, 3syl6 33 . . . 4  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( x  e.  |^| A  ->  Tr  x ) )
1912, 18ralrimi 2501 . . 3  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  A. x  e.  |^| A Tr  x
)
20 dford3 4284 . . 3  |-  ( Ord  |^| A  <->  ( Tr  |^| A  /\  A. x  e. 
|^| A Tr  x
) )
219, 19, 20sylanbrc 413 . 2  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  Ord  |^| A
)
22 inteximm 4069 . . . 4  |-  ( E. x  x  e.  A  ->  |^| A  e.  _V )
2322adantl 275 . . 3  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  e. 
_V )
24 elong 4290 . . 3  |-  ( |^| A  e.  _V  ->  (
|^| A  e.  On  <->  Ord  |^| A ) )
2523, 24syl 14 . 2  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  ( |^| A  e.  On  <->  Ord  |^| A
) )
2621, 25mpbird 166 1  |-  ( ( A  C_  On  /\  E. x  x  e.  A
)  ->  |^| A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1468    e. wcel 1480   A.wral 2414   _Vcvv 2681    C_ wss 3066   U.cuni 3731   |^|cint 3766   Tr wtr 4021   Ord word 4279   Oncon0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-uni 3732  df-int 3767  df-tr 4022  df-iord 4283  df-on 4285  df-suc 4288
This theorem is referenced by:  onintrab2im  4429
  Copyright terms: Public domain W3C validator