Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onintonm | Unicode version |
Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
onintonm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . . . . . 7 | |
2 | eloni 4353 | . . . . . . . 8 | |
3 | ordtr 4356 | . . . . . . . 8 | |
4 | 2, 3 | syl 14 | . . . . . . 7 |
5 | 1, 4 | syl6 33 | . . . . . 6 |
6 | 5 | ralrimiv 2538 | . . . . 5 |
7 | trint 4095 | . . . . 5 | |
8 | 6, 7 | syl 14 | . . . 4 |
9 | 8 | adantr 274 | . . 3 |
10 | nfv 1516 | . . . . 5 | |
11 | nfe1 1484 | . . . . 5 | |
12 | 10, 11 | nfan 1553 | . . . 4 |
13 | intssuni2m 3848 | . . . . . . . 8 | |
14 | unon 4488 | . . . . . . . 8 | |
15 | 13, 14 | sseqtrdi 3190 | . . . . . . 7 |
16 | 15 | sseld 3141 | . . . . . 6 |
17 | 16, 2 | syl6 33 | . . . . 5 |
18 | 17, 3 | syl6 33 | . . . 4 |
19 | 12, 18 | ralrimi 2537 | . . 3 |
20 | dford3 4345 | . . 3 | |
21 | 9, 19, 20 | sylanbrc 414 | . 2 |
22 | inteximm 4128 | . . . 4 | |
23 | 22 | adantl 275 | . . 3 |
24 | elong 4351 | . . 3 | |
25 | 23, 24 | syl 14 | . 2 |
26 | 21, 25 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1480 wcel 2136 wral 2444 cvv 2726 wss 3116 cuni 3789 cint 3824 wtr 4080 word 4340 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: onintrab2im 4495 |
Copyright terms: Public domain | W3C validator |