Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onintonm | Unicode version |
Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
onintonm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . . . . 7 | |
2 | eloni 4360 | . . . . . . . 8 | |
3 | ordtr 4363 | . . . . . . . 8 | |
4 | 2, 3 | syl 14 | . . . . . . 7 |
5 | 1, 4 | syl6 33 | . . . . . 6 |
6 | 5 | ralrimiv 2542 | . . . . 5 |
7 | trint 4102 | . . . . 5 | |
8 | 6, 7 | syl 14 | . . . 4 |
9 | 8 | adantr 274 | . . 3 |
10 | nfv 1521 | . . . . 5 | |
11 | nfe1 1489 | . . . . 5 | |
12 | 10, 11 | nfan 1558 | . . . 4 |
13 | intssuni2m 3855 | . . . . . . . 8 | |
14 | unon 4495 | . . . . . . . 8 | |
15 | 13, 14 | sseqtrdi 3195 | . . . . . . 7 |
16 | 15 | sseld 3146 | . . . . . 6 |
17 | 16, 2 | syl6 33 | . . . . 5 |
18 | 17, 3 | syl6 33 | . . . 4 |
19 | 12, 18 | ralrimi 2541 | . . 3 |
20 | dford3 4352 | . . 3 | |
21 | 9, 19, 20 | sylanbrc 415 | . 2 |
22 | inteximm 4135 | . . . 4 | |
23 | 22 | adantl 275 | . . 3 |
24 | elong 4358 | . . 3 | |
25 | 23, 24 | syl 14 | . 2 |
26 | 21, 25 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1485 wcel 2141 wral 2448 cvv 2730 wss 3121 cuni 3796 cint 3831 wtr 4087 word 4347 con0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: onintrab2im 4502 |
Copyright terms: Public domain | W3C validator |