| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onintonm | Unicode version | ||
| Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| onintonm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 |
. . . . . . 7
| |
| 2 | eloni 4466 |
. . . . . . . 8
| |
| 3 | ordtr 4469 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl 14 |
. . . . . . 7
|
| 5 | 1, 4 | syl6 33 |
. . . . . 6
|
| 6 | 5 | ralrimiv 2602 |
. . . . 5
|
| 7 | trint 4197 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | 8 | adantr 276 |
. . 3
|
| 10 | nfv 1574 |
. . . . 5
| |
| 11 | nfe1 1542 |
. . . . 5
| |
| 12 | 10, 11 | nfan 1611 |
. . . 4
|
| 13 | intssuni2m 3947 |
. . . . . . . 8
| |
| 14 | unon 4603 |
. . . . . . . 8
| |
| 15 | 13, 14 | sseqtrdi 3272 |
. . . . . . 7
|
| 16 | 15 | sseld 3223 |
. . . . . 6
|
| 17 | 16, 2 | syl6 33 |
. . . . 5
|
| 18 | 17, 3 | syl6 33 |
. . . 4
|
| 19 | 12, 18 | ralrimi 2601 |
. . 3
|
| 20 | dford3 4458 |
. . 3
| |
| 21 | 9, 19, 20 | sylanbrc 417 |
. 2
|
| 22 | inteximm 4233 |
. . . 4
| |
| 23 | 22 | adantl 277 |
. . 3
|
| 24 | elong 4464 |
. . 3
| |
| 25 | 23, 24 | syl 14 |
. 2
|
| 26 | 21, 25 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 |
| This theorem is referenced by: onintrab2im 4610 |
| Copyright terms: Public domain | W3C validator |