ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteximm GIF version

Theorem inteximm 4197
Description: The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
inteximm (∃𝑥 𝑥𝐴 𝐴 ∈ V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem inteximm
StepHypRef Expression
1 intss1 3902 . . 3 (𝑥𝐴 𝐴𝑥)
2 vex 2776 . . . 4 𝑥 ∈ V
32ssex 4185 . . 3 ( 𝐴𝑥 𝐴 ∈ V)
41, 3syl 14 . 2 (𝑥𝐴 𝐴 ∈ V)
54exlimiv 1622 1 (∃𝑥 𝑥𝐴 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1516  wcel 2177  Vcvv 2773  wss 3167   cint 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4166
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3173  df-ss 3180  df-int 3888
This theorem is referenced by:  intexabim  4200  iinexgm  4202  onintonm  4569  elfi2  7081  elfir  7082  fifo  7089
  Copyright terms: Public domain W3C validator