| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inteximm | GIF version | ||
| Description: The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| inteximm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 3917 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
| 2 | vex 2782 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | ssex 4200 | . . 3 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
| 4 | 1, 3 | syl 14 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 5 | 4 | exlimiv 1624 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1518 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 ∩ cint 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-sep 4181 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-ss 3190 df-int 3903 |
| This theorem is referenced by: intexabim 4215 iinexgm 4217 onintonm 4586 elfi2 7107 elfir 7108 fifo 7115 |
| Copyright terms: Public domain | W3C validator |