ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteximm GIF version

Theorem inteximm 4182
Description: The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
inteximm (∃𝑥 𝑥𝐴 𝐴 ∈ V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem inteximm
StepHypRef Expression
1 intss1 3889 . . 3 (𝑥𝐴 𝐴𝑥)
2 vex 2766 . . . 4 𝑥 ∈ V
32ssex 4170 . . 3 ( 𝐴𝑥 𝐴 ∈ V)
41, 3syl 14 . 2 (𝑥𝐴 𝐴 ∈ V)
54exlimiv 1612 1 (∃𝑥 𝑥𝐴 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1506  wcel 2167  Vcvv 2763  wss 3157   cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-int 3875
This theorem is referenced by:  intexabim  4185  iinexgm  4187  onintonm  4553  elfi2  7038  elfir  7039  fifo  7046
  Copyright terms: Public domain W3C validator