Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inteximm | GIF version |
Description: The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
inteximm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 3839 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
2 | vex 2729 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | ssex 4119 | . . 3 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
4 | 1, 3 | syl 14 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
5 | 4 | exlimiv 1586 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 ∩ cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 |
This theorem is referenced by: intexabim 4131 iinexgm 4133 onintonm 4494 elfi2 6937 elfir 6938 fifo 6945 |
Copyright terms: Public domain | W3C validator |