ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteximm GIF version

Theorem inteximm 4128
Description: The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
inteximm (∃𝑥 𝑥𝐴 𝐴 ∈ V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem inteximm
StepHypRef Expression
1 intss1 3839 . . 3 (𝑥𝐴 𝐴𝑥)
2 vex 2729 . . . 4 𝑥 ∈ V
32ssex 4119 . . 3 ( 𝐴𝑥 𝐴 ∈ V)
41, 3syl 14 . 2 (𝑥𝐴 𝐴 ∈ V)
54exlimiv 1586 1 (∃𝑥 𝑥𝐴 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1480  wcel 2136  Vcvv 2726  wss 3116   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-int 3825
This theorem is referenced by:  intexabim  4131  iinexgm  4133  onintonm  4494  elfi2  6937  elfir  6938  fifo  6945
  Copyright terms: Public domain W3C validator