| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inteximm | GIF version | ||
| Description: The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| inteximm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 3889 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
| 2 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | ssex 4170 | . . 3 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
| 4 | 1, 3 | syl 14 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 5 | 4 | exlimiv 1612 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 ∩ cint 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 |
| This theorem is referenced by: intexabim 4185 iinexgm 4187 onintonm 4553 elfi2 7038 elfir 7039 fifo 7046 |
| Copyright terms: Public domain | W3C validator |