ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfir Unicode version

Theorem elfir 7101
Description: Sufficient condition for an element of  ( fi `  B ). (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfir  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  |^| A  e.  ( fi
`  B ) )

Proof of Theorem elfir
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . . . . 6  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  A  C_  B )
2 elpw2g 4216 . . . . . 6  |-  ( B  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
31, 2imbitrrid 156 . . . . 5  |-  ( B  e.  V  ->  (
( A  C_  B  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  A  e.  ~P B ) )
43imp 124 . . . 4  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  e.  ~P B
)
5 simpr3 1008 . . . 4  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  e.  Fin )
64, 5elind 3366 . . 3  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  e.  ( ~P B  i^i  Fin ) )
7 eqid 2207 . . 3  |-  |^| A  =  |^| A
8 inteq 3902 . . . 4  |-  ( x  =  A  ->  |^| x  =  |^| A )
98rspceeqv 2902 . . 3  |-  ( ( A  e.  ( ~P B  i^i  Fin )  /\  |^| A  =  |^| A )  ->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  = 
|^| x )
106, 7, 9sylancl 413 . 2  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  =  |^| x
)
11 simp2 1001 . . . . 5  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  A  =/=  (/) )
12 fin0 7008 . . . . . 6  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. z  z  e.  A ) )
13123ad2ant3 1023 . . . . 5  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  ( A  =/=  (/)  <->  E. z  z  e.  A ) )
1411, 13mpbid 147 . . . 4  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  E. z 
z  e.  A )
15 inteximm 4209 . . . 4  |-  ( E. z  z  e.  A  ->  |^| A  e.  _V )
1614, 15syl 14 . . 3  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  |^| A  e.  _V )
17 id 19 . . 3  |-  ( B  e.  V  ->  B  e.  V )
18 elfi 7099 . . 3  |-  ( (
|^| A  e.  _V  /\  B  e.  V )  ->  ( |^| A  e.  ( fi `  B
)  <->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  =  |^| x ) )
1916, 17, 18syl2anr 290 . 2  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  -> 
( |^| A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  =  |^| x
) )
2010, 19mpbird 167 1  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  |^| A  e.  ( fi
`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178    =/= wne 2378   E.wrex 2487   _Vcvv 2776    i^i cin 3173    C_ wss 3174   (/)c0 3468   ~Pcpw 3626   |^|cint 3899   ` cfv 5290   Fincfn 6850   ficfi 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-er 6643  df-en 6851  df-fin 6853  df-fi 7097
This theorem is referenced by:  ssfii  7102
  Copyright terms: Public domain W3C validator