ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfir Unicode version

Theorem elfir 7032
Description: Sufficient condition for an element of  ( fi `  B ). (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfir  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  |^| A  e.  ( fi
`  B ) )

Proof of Theorem elfir
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . . 6  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  A  C_  B )
2 elpw2g 4185 . . . . . 6  |-  ( B  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
31, 2imbitrrid 156 . . . . 5  |-  ( B  e.  V  ->  (
( A  C_  B  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  A  e.  ~P B ) )
43imp 124 . . . 4  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  e.  ~P B
)
5 simpr3 1007 . . . 4  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  e.  Fin )
64, 5elind 3344 . . 3  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  e.  ( ~P B  i^i  Fin ) )
7 eqid 2193 . . 3  |-  |^| A  =  |^| A
8 inteq 3873 . . . 4  |-  ( x  =  A  ->  |^| x  =  |^| A )
98rspceeqv 2882 . . 3  |-  ( ( A  e.  ( ~P B  i^i  Fin )  /\  |^| A  =  |^| A )  ->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  = 
|^| x )
106, 7, 9sylancl 413 . 2  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  =  |^| x
)
11 simp2 1000 . . . . 5  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  A  =/=  (/) )
12 fin0 6941 . . . . . 6  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. z  z  e.  A ) )
13123ad2ant3 1022 . . . . 5  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  ( A  =/=  (/)  <->  E. z  z  e.  A ) )
1411, 13mpbid 147 . . . 4  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  E. z 
z  e.  A )
15 inteximm 4178 . . . 4  |-  ( E. z  z  e.  A  ->  |^| A  e.  _V )
1614, 15syl 14 . . 3  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  |^| A  e.  _V )
17 id 19 . . 3  |-  ( B  e.  V  ->  B  e.  V )
18 elfi 7030 . . 3  |-  ( (
|^| A  e.  _V  /\  B  e.  V )  ->  ( |^| A  e.  ( fi `  B
)  <->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  =  |^| x ) )
1916, 17, 18syl2anr 290 . 2  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  -> 
( |^| A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  =  |^| x
) )
2010, 19mpbird 167 1  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  |^| A  e.  ( fi
`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164    =/= wne 2364   E.wrex 2473   _Vcvv 2760    i^i cin 3152    C_ wss 3153   (/)c0 3446   ~Pcpw 3601   |^|cint 3870   ` cfv 5254   Fincfn 6794   ficfi 7027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-fin 6797  df-fi 7028
This theorem is referenced by:  ssfii  7033
  Copyright terms: Public domain W3C validator