Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfir | Unicode version |
Description: Sufficient condition for an element of . (Contributed by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
elfir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 982 | . . . . . 6 | |
2 | elpw2g 4117 | . . . . . 6 | |
3 | 1, 2 | syl5ibr 155 | . . . . 5 |
4 | 3 | imp 123 | . . . 4 |
5 | simpr3 990 | . . . 4 | |
6 | 4, 5 | elind 3292 | . . 3 |
7 | eqid 2157 | . . 3 | |
8 | inteq 3810 | . . . 4 | |
9 | 8 | rspceeqv 2834 | . . 3 |
10 | 6, 7, 9 | sylancl 410 | . 2 |
11 | simp2 983 | . . . . 5 | |
12 | fin0 6823 | . . . . . 6 | |
13 | 12 | 3ad2ant3 1005 | . . . . 5 |
14 | 11, 13 | mpbid 146 | . . . 4 |
15 | inteximm 4110 | . . . 4 | |
16 | 14, 15 | syl 14 | . . 3 |
17 | id 19 | . . 3 | |
18 | elfi 6908 | . . 3 | |
19 | 16, 17, 18 | syl2anr 288 | . 2 |
20 | 10, 19 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wex 1472 wcel 2128 wne 2327 wrex 2436 cvv 2712 cin 3101 wss 3102 c0 3394 cpw 3543 cint 3807 cfv 5167 cfn 6678 cfi 6905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-er 6473 df-en 6679 df-fin 6681 df-fi 6906 |
This theorem is referenced by: ssfii 6911 |
Copyright terms: Public domain | W3C validator |