| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intexrabim | GIF version | ||
| Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| intexrabim | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intexabim 4236 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
| 2 | df-rex 2514 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rab 2517 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 4 | 3 | inteqi 3927 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 5 | 4 | eleq1i 2295 | . 2 ⊢ (∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
| 6 | 1, 2, 5 | 3imtr4i 201 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∃wrex 2509 {crab 2512 Vcvv 2799 ∩ cint 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 df-int 3924 |
| This theorem is referenced by: cardcl 7361 isnumi 7362 cardval3ex 7365 lspval 14362 clsval 14793 |
| Copyright terms: Public domain | W3C validator |