ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexrabim GIF version

Theorem intexrabim 4186
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexrabim (∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)

Proof of Theorem intexrabim
StepHypRef Expression
1 intexabim 4185 . 2 (∃𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
2 df-rex 2481 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
3 df-rab 2484 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43inteqi 3878 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
54eleq1i 2262 . 2 ( {𝑥𝐴𝜑} ∈ V ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
61, 2, 53imtr4i 201 1 (∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1506  wcel 2167  {cab 2182  wrex 2476  {crab 2479  Vcvv 2763   cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-int 3875
This theorem is referenced by:  cardcl  7248  isnumi  7249  cardval3ex  7252  lspval  13946  clsval  14347
  Copyright terms: Public domain W3C validator