![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intexrabim | GIF version |
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
intexrabim | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intexabim 4017 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
2 | df-rex 2381 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rab 2384 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
4 | 3 | inteqi 3722 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
5 | 4 | eleq1i 2165 | . 2 ⊢ (∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
6 | 1, 2, 5 | 3imtr4i 200 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1436 ∈ wcel 1448 {cab 2086 ∃wrex 2376 {crab 2379 Vcvv 2641 ∩ cint 3718 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-in 3027 df-ss 3034 df-int 3719 |
This theorem is referenced by: cardcl 6948 isnumi 6949 cardval3ex 6952 clsval 12062 |
Copyright terms: Public domain | W3C validator |