ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspval Unicode version

Theorem lspval 14227
Description: The span of a set of vectors (in a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspval  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
Distinct variable groups:    t, S    t, U    t, V
Allowed substitution hints:    N( t)    W( t)

Proof of Theorem lspval
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 lspval.v . . . . 5  |-  V  =  ( Base `  W
)
2 lspval.s . . . . 5  |-  S  =  ( LSubSp `  W )
3 lspval.n . . . . 5  |-  N  =  ( LSpan `  W )
41, 2, 3lspfval 14225 . . . 4  |-  ( W  e.  LMod  ->  N  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
54fveq1d 5591 . . 3  |-  ( W  e.  LMod  ->  ( N `
 U )  =  ( ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) `
 U ) )
65adantr 276 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  ( ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) `  U ) )
7 eqid 2206 . . 3  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )
8 sseq1 3220 . . . . 5  |-  ( s  =  U  ->  (
s  C_  t  <->  U  C_  t
) )
98rabbidv 2762 . . . 4  |-  ( s  =  U  ->  { t  e.  S  |  s 
C_  t }  =  { t  e.  S  |  U  C_  t } )
109inteqd 3896 . . 3  |-  ( s  =  U  ->  |^| { t  e.  S  |  s 
C_  t }  =  |^| { t  e.  S  |  U  C_  t } )
11 simpr 110 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  V )
12 basfn 12965 . . . . . . 7  |-  Base  Fn  _V
13 elex 2785 . . . . . . . 8  |-  ( W  e.  LMod  ->  W  e. 
_V )
1413adantr 276 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  W  e.  _V )
15 funfvex 5606 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1615funfni 5385 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1712, 14, 16sylancr 414 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( Base `  W )  e. 
_V )
181, 17eqeltrid 2293 . . . . 5  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  V  e.  _V )
19 elpw2g 4208 . . . . 5  |-  ( V  e.  _V  ->  ( U  e.  ~P V  <->  U 
C_  V ) )
2018, 19syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( U  e.  ~P V  <->  U 
C_  V ) )
2111, 20mpbird 167 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  e.  ~P V )
221, 2lss1 14199 . . . . 5  |-  ( W  e.  LMod  ->  V  e.  S )
23 sseq2 3221 . . . . . 6  |-  ( t  =  V  ->  ( U  C_  t  <->  U  C_  V
) )
2423rspcev 2881 . . . . 5  |-  ( ( V  e.  S  /\  U  C_  V )  ->  E. t  e.  S  U  C_  t )
2522, 24sylan 283 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  E. t  e.  S  U  C_  t
)
26 intexrabim 4205 . . . 4  |-  ( E. t  e.  S  U  C_  t  ->  |^| { t  e.  S  |  U  C_  t }  e.  _V )
2725, 26syl 14 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  |^| { t  e.  S  |  U  C_  t }  e.  _V )
287, 10, 21, 27fvmptd3 5686 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  (
( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) `  U
)  =  |^| { t  e.  S  |  U  C_  t } )
296, 28eqtrd 2239 1  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   E.wrex 2486   {crab 2489   _Vcvv 2773    C_ wss 3170   ~Pcpw 3621   |^|cint 3891    |-> cmpt 4113    Fn wfn 5275   ` cfv 5280   Basecbs 12907   LModclmod 14124   LSubSpclss 14189   LSpanclspn 14223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-lmod 14126  df-lssm 14190  df-lsp 14224
This theorem is referenced by:  lspid  14234  lspss  14236  lspssid  14237
  Copyright terms: Public domain W3C validator