ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspval Unicode version

Theorem lspval 13574
Description: The span of a set of vectors (in a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspval  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
Distinct variable groups:    t, S    t, U    t, V
Allowed substitution hints:    N( t)    W( t)

Proof of Theorem lspval
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 lspval.v . . . . 5  |-  V  =  ( Base `  W
)
2 lspval.s . . . . 5  |-  S  =  ( LSubSp `  W )
3 lspval.n . . . . 5  |-  N  =  ( LSpan `  W )
41, 2, 3lspfval 13572 . . . 4  |-  ( W  e.  LMod  ->  N  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
54fveq1d 5529 . . 3  |-  ( W  e.  LMod  ->  ( N `
 U )  =  ( ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) `
 U ) )
65adantr 276 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  ( ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) `  U ) )
7 eqid 2187 . . 3  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )
8 sseq1 3190 . . . . 5  |-  ( s  =  U  ->  (
s  C_  t  <->  U  C_  t
) )
98rabbidv 2738 . . . 4  |-  ( s  =  U  ->  { t  e.  S  |  s 
C_  t }  =  { t  e.  S  |  U  C_  t } )
109inteqd 3861 . . 3  |-  ( s  =  U  ->  |^| { t  e.  S  |  s 
C_  t }  =  |^| { t  e.  S  |  U  C_  t } )
11 simpr 110 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  V )
12 basfn 12533 . . . . . . 7  |-  Base  Fn  _V
13 elex 2760 . . . . . . . 8  |-  ( W  e.  LMod  ->  W  e. 
_V )
1413adantr 276 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  W  e.  _V )
15 funfvex 5544 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1615funfni 5328 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1712, 14, 16sylancr 414 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( Base `  W )  e. 
_V )
181, 17eqeltrid 2274 . . . . 5  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  V  e.  _V )
19 elpw2g 4168 . . . . 5  |-  ( V  e.  _V  ->  ( U  e.  ~P V  <->  U 
C_  V ) )
2018, 19syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( U  e.  ~P V  <->  U 
C_  V ) )
2111, 20mpbird 167 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  e.  ~P V )
221, 2lss1 13546 . . . . 5  |-  ( W  e.  LMod  ->  V  e.  S )
23 sseq2 3191 . . . . . 6  |-  ( t  =  V  ->  ( U  C_  t  <->  U  C_  V
) )
2423rspcev 2853 . . . . 5  |-  ( ( V  e.  S  /\  U  C_  V )  ->  E. t  e.  S  U  C_  t )
2522, 24sylan 283 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  E. t  e.  S  U  C_  t
)
26 intexrabim 4165 . . . 4  |-  ( E. t  e.  S  U  C_  t  ->  |^| { t  e.  S  |  U  C_  t }  e.  _V )
2725, 26syl 14 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  |^| { t  e.  S  |  U  C_  t }  e.  _V )
287, 10, 21, 27fvmptd3 5622 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  (
( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) `  U
)  =  |^| { t  e.  S  |  U  C_  t } )
296, 28eqtrd 2220 1  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   E.wrex 2466   {crab 2469   _Vcvv 2749    C_ wss 3141   ~Pcpw 3587   |^|cint 3856    |-> cmpt 4076    Fn wfn 5223   ` cfv 5228   Basecbs 12475   LModclmod 13471   LSubSpclss 13536   LSpanclspn 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-mulr 12564  df-sca 12566  df-vsca 12567  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901  df-lmod 13473  df-lssm 13537  df-lsp 13571
This theorem is referenced by:  lspid  13581  lspss  13583  lspssid  13584
  Copyright terms: Public domain W3C validator