ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspval Unicode version

Theorem lspval 13886
Description: The span of a set of vectors (in a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspval  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
Distinct variable groups:    t, S    t, U    t, V
Allowed substitution hints:    N( t)    W( t)

Proof of Theorem lspval
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 lspval.v . . . . 5  |-  V  =  ( Base `  W
)
2 lspval.s . . . . 5  |-  S  =  ( LSubSp `  W )
3 lspval.n . . . . 5  |-  N  =  ( LSpan `  W )
41, 2, 3lspfval 13884 . . . 4  |-  ( W  e.  LMod  ->  N  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
54fveq1d 5556 . . 3  |-  ( W  e.  LMod  ->  ( N `
 U )  =  ( ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) `
 U ) )
65adantr 276 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  ( ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) `  U ) )
7 eqid 2193 . . 3  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )
8 sseq1 3202 . . . . 5  |-  ( s  =  U  ->  (
s  C_  t  <->  U  C_  t
) )
98rabbidv 2749 . . . 4  |-  ( s  =  U  ->  { t  e.  S  |  s 
C_  t }  =  { t  e.  S  |  U  C_  t } )
109inteqd 3875 . . 3  |-  ( s  =  U  ->  |^| { t  e.  S  |  s 
C_  t }  =  |^| { t  e.  S  |  U  C_  t } )
11 simpr 110 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  V )
12 basfn 12676 . . . . . . 7  |-  Base  Fn  _V
13 elex 2771 . . . . . . . 8  |-  ( W  e.  LMod  ->  W  e. 
_V )
1413adantr 276 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  W  e.  _V )
15 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1615funfni 5354 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1712, 14, 16sylancr 414 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( Base `  W )  e. 
_V )
181, 17eqeltrid 2280 . . . . 5  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  V  e.  _V )
19 elpw2g 4185 . . . . 5  |-  ( V  e.  _V  ->  ( U  e.  ~P V  <->  U 
C_  V ) )
2018, 19syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( U  e.  ~P V  <->  U 
C_  V ) )
2111, 20mpbird 167 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  e.  ~P V )
221, 2lss1 13858 . . . . 5  |-  ( W  e.  LMod  ->  V  e.  S )
23 sseq2 3203 . . . . . 6  |-  ( t  =  V  ->  ( U  C_  t  <->  U  C_  V
) )
2423rspcev 2864 . . . . 5  |-  ( ( V  e.  S  /\  U  C_  V )  ->  E. t  e.  S  U  C_  t )
2522, 24sylan 283 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  E. t  e.  S  U  C_  t
)
26 intexrabim 4182 . . . 4  |-  ( E. t  e.  S  U  C_  t  ->  |^| { t  e.  S  |  U  C_  t }  e.  _V )
2725, 26syl 14 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  |^| { t  e.  S  |  U  C_  t }  e.  _V )
287, 10, 21, 27fvmptd3 5651 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  (
( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) `  U
)  =  |^| { t  e.  S  |  U  C_  t } )
296, 28eqtrd 2226 1  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   {crab 2476   _Vcvv 2760    C_ wss 3153   ~Pcpw 3601   |^|cint 3870    |-> cmpt 4090    Fn wfn 5249   ` cfv 5254   Basecbs 12618   LModclmod 13783   LSubSpclss 13848   LSpanclspn 13882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-lmod 13785  df-lssm 13849  df-lsp 13883
This theorem is referenced by:  lspid  13893  lspss  13895  lspssid  13896
  Copyright terms: Public domain W3C validator