ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspval Unicode version

Theorem lspval 13482
Description: The span of a set of vectors (in a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspval  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
Distinct variable groups:    t, S    t, U    t, V
Allowed substitution hints:    N( t)    W( t)

Proof of Theorem lspval
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 lspval.v . . . . 5  |-  V  =  ( Base `  W
)
2 lspval.s . . . . 5  |-  S  =  ( LSubSp `  W )
3 lspval.n . . . . 5  |-  N  =  ( LSpan `  W )
41, 2, 3lspfval 13480 . . . 4  |-  ( W  e.  LMod  ->  N  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
54fveq1d 5519 . . 3  |-  ( W  e.  LMod  ->  ( N `
 U )  =  ( ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) `
 U ) )
65adantr 276 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  ( ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) `  U ) )
7 eqid 2177 . . 3  |-  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } )
8 sseq1 3180 . . . . 5  |-  ( s  =  U  ->  (
s  C_  t  <->  U  C_  t
) )
98rabbidv 2728 . . . 4  |-  ( s  =  U  ->  { t  e.  S  |  s 
C_  t }  =  { t  e.  S  |  U  C_  t } )
109inteqd 3851 . . 3  |-  ( s  =  U  ->  |^| { t  e.  S  |  s 
C_  t }  =  |^| { t  e.  S  |  U  C_  t } )
11 simpr 110 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  V )
12 basfn 12522 . . . . . . 7  |-  Base  Fn  _V
13 elex 2750 . . . . . . . 8  |-  ( W  e.  LMod  ->  W  e. 
_V )
1413adantr 276 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  W  e.  _V )
15 funfvex 5534 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1615funfni 5318 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1712, 14, 16sylancr 414 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( Base `  W )  e. 
_V )
181, 17eqeltrid 2264 . . . . 5  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  V  e.  _V )
19 elpw2g 4158 . . . . 5  |-  ( V  e.  _V  ->  ( U  e.  ~P V  <->  U 
C_  V ) )
2018, 19syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( U  e.  ~P V  <->  U 
C_  V ) )
2111, 20mpbird 167 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  e.  ~P V )
221, 2lss1 13454 . . . . 5  |-  ( W  e.  LMod  ->  V  e.  S )
23 sseq2 3181 . . . . . 6  |-  ( t  =  V  ->  ( U  C_  t  <->  U  C_  V
) )
2423rspcev 2843 . . . . 5  |-  ( ( V  e.  S  /\  U  C_  V )  ->  E. t  e.  S  U  C_  t )
2522, 24sylan 283 . . . 4  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  E. t  e.  S  U  C_  t
)
26 intexrabim 4155 . . . 4  |-  ( E. t  e.  S  U  C_  t  ->  |^| { t  e.  S  |  U  C_  t }  e.  _V )
2725, 26syl 14 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  |^| { t  e.  S  |  U  C_  t }  e.  _V )
287, 10, 21, 27fvmptd3 5611 . 2  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  (
( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) `  U
)  =  |^| { t  e.  S  |  U  C_  t } )
296, 28eqtrd 2210 1  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   {crab 2459   _Vcvv 2739    C_ wss 3131   ~Pcpw 3577   |^|cint 3846    |-> cmpt 4066    Fn wfn 5213   ` cfv 5218   Basecbs 12464   LModclmod 13382   LSubSpclss 13447   LSpanclspn 13478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-mulr 12552  df-sca 12554  df-vsca 12555  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-lmod 13384  df-lssm 13448  df-lsp 13479
This theorem is referenced by:  lspid  13488  lspss  13490  lspssid  13491
  Copyright terms: Public domain W3C validator