ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clsval Unicode version

Theorem clsval 14793
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem clsval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21clsfval 14783 . . . 4  |-  ( J  e.  Top  ->  ( cls `  J )  =  ( y  e.  ~P X  |->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x } ) )
32fveq1d 5631 . . 3  |-  ( J  e.  Top  ->  (
( cls `  J
) `  S )  =  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )
)
43adantr 276 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )
)
5 eqid 2229 . . 3  |-  ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
)  =  ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
)
6 sseq1 3247 . . . . 5  |-  ( y  =  S  ->  (
y  C_  x  <->  S  C_  x
) )
76rabbidv 2788 . . . 4  |-  ( y  =  S  ->  { x  e.  ( Clsd `  J
)  |  y  C_  x }  =  {
x  e.  ( Clsd `  J )  |  S  C_  x } )
87inteqd 3928 . . 3  |-  ( y  =  S  ->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x }  =  |^| { x  e.  ( Clsd `  J )  |  S  C_  x } )
91topopn 14690 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
10 elpw2g 4240 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
119, 10syl 14 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
1211biimpar 297 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
131topcld 14791 . . . . 5  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
14 sseq2 3248 . . . . . 6  |-  ( x  =  X  ->  ( S  C_  x  <->  S  C_  X
) )
1514rspcev 2907 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  S  C_  X )  ->  E. x  e.  ( Clsd `  J
) S  C_  x
)
1613, 15sylan 283 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  E. x  e.  ( Clsd `  J ) S 
C_  x )
17 intexrabim 4237 . . . 4  |-  ( E. x  e.  ( Clsd `  J ) S  C_  x  ->  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x }  e.  _V )
1816, 17syl 14 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  _V )
195, 8, 12, 18fvmptd3 5730 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( y  e. 
~P X  |->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x } ) `  S
)  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
204, 19eqtrd 2262 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   U.cuni 3888   |^|cint 3923    |-> cmpt 4145   ` cfv 5318   Topctop 14679   Clsdccld 14774   clsccl 14776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-top 14680  df-cld 14777  df-cls 14779
This theorem is referenced by:  cldcls  14796  clsss  14800  sscls  14802
  Copyright terms: Public domain W3C validator