Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clsval | Unicode version |
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 |
Ref | Expression |
---|---|
clsval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 | |
2 | 1 | clsfval 12895 | . . . 4 |
3 | 2 | fveq1d 5498 | . . 3 |
4 | 3 | adantr 274 | . 2 |
5 | eqid 2170 | . . 3 | |
6 | sseq1 3170 | . . . . 5 | |
7 | 6 | rabbidv 2719 | . . . 4 |
8 | 7 | inteqd 3836 | . . 3 |
9 | 1 | topopn 12800 | . . . . 5 |
10 | elpw2g 4142 | . . . . 5 | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | 11 | biimpar 295 | . . 3 |
13 | 1 | topcld 12903 | . . . . 5 |
14 | sseq2 3171 | . . . . . 6 | |
15 | 14 | rspcev 2834 | . . . . 5 |
16 | 13, 15 | sylan 281 | . . . 4 |
17 | intexrabim 4139 | . . . 4 | |
18 | 16, 17 | syl 14 | . . 3 |
19 | 5, 8, 12, 18 | fvmptd3 5589 | . 2 |
20 | 4, 19 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 crab 2452 cvv 2730 wss 3121 cpw 3566 cuni 3796 cint 3831 cmpt 4050 cfv 5198 ctop 12789 ccld 12886 ccl 12888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-top 12790 df-cld 12889 df-cls 12891 |
This theorem is referenced by: cldcls 12908 clsss 12912 sscls 12914 |
Copyright terms: Public domain | W3C validator |