Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clsval | Unicode version |
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 |
Ref | Expression |
---|---|
clsval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 | |
2 | 1 | clsfval 12741 | . . . 4 |
3 | 2 | fveq1d 5488 | . . 3 |
4 | 3 | adantr 274 | . 2 |
5 | eqid 2165 | . . 3 | |
6 | sseq1 3165 | . . . . 5 | |
7 | 6 | rabbidv 2715 | . . . 4 |
8 | 7 | inteqd 3829 | . . 3 |
9 | 1 | topopn 12646 | . . . . 5 |
10 | elpw2g 4135 | . . . . 5 | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | 11 | biimpar 295 | . . 3 |
13 | 1 | topcld 12749 | . . . . 5 |
14 | sseq2 3166 | . . . . . 6 | |
15 | 14 | rspcev 2830 | . . . . 5 |
16 | 13, 15 | sylan 281 | . . . 4 |
17 | intexrabim 4132 | . . . 4 | |
18 | 16, 17 | syl 14 | . . 3 |
19 | 5, 8, 12, 18 | fvmptd3 5579 | . 2 |
20 | 4, 19 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wrex 2445 crab 2448 cvv 2726 wss 3116 cpw 3559 cuni 3789 cint 3824 cmpt 4043 cfv 5188 ctop 12635 ccld 12732 ccl 12734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-top 12636 df-cld 12735 df-cls 12737 |
This theorem is referenced by: cldcls 12754 clsss 12758 sscls 12760 |
Copyright terms: Public domain | W3C validator |