ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clsval Unicode version

Theorem clsval 12269
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem clsval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21clsfval 12259 . . . 4  |-  ( J  e.  Top  ->  ( cls `  J )  =  ( y  e.  ~P X  |->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x } ) )
32fveq1d 5416 . . 3  |-  ( J  e.  Top  ->  (
( cls `  J
) `  S )  =  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )
)
43adantr 274 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )
)
5 eqid 2137 . . 3  |-  ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
)  =  ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
)
6 sseq1 3115 . . . . 5  |-  ( y  =  S  ->  (
y  C_  x  <->  S  C_  x
) )
76rabbidv 2670 . . . 4  |-  ( y  =  S  ->  { x  e.  ( Clsd `  J
)  |  y  C_  x }  =  {
x  e.  ( Clsd `  J )  |  S  C_  x } )
87inteqd 3771 . . 3  |-  ( y  =  S  ->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x }  =  |^| { x  e.  ( Clsd `  J )  |  S  C_  x } )
91topopn 12164 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
10 elpw2g 4076 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
119, 10syl 14 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
1211biimpar 295 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
131topcld 12267 . . . . 5  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
14 sseq2 3116 . . . . . 6  |-  ( x  =  X  ->  ( S  C_  x  <->  S  C_  X
) )
1514rspcev 2784 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  S  C_  X )  ->  E. x  e.  ( Clsd `  J
) S  C_  x
)
1613, 15sylan 281 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  E. x  e.  ( Clsd `  J ) S 
C_  x )
17 intexrabim 4073 . . . 4  |-  ( E. x  e.  ( Clsd `  J ) S  C_  x  ->  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x }  e.  _V )
1816, 17syl 14 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  _V )
195, 8, 12, 18fvmptd3 5507 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( y  e. 
~P X  |->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x } ) `  S
)  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
204, 19eqtrd 2170 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415   {crab 2418   _Vcvv 2681    C_ wss 3066   ~Pcpw 3505   U.cuni 3731   |^|cint 3766    |-> cmpt 3984   ` cfv 5118   Topctop 12153   Clsdccld 12250   clsccl 12252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-top 12154  df-cld 12253  df-cls 12255
This theorem is referenced by:  cldcls  12272  clsss  12276  sscls  12278
  Copyright terms: Public domain W3C validator