| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clsval | Unicode version | ||
| Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| iscld.1 |
|
| Ref | Expression |
|---|---|
| clsval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 |
. . . . 5
| |
| 2 | 1 | clsfval 14740 |
. . . 4
|
| 3 | 2 | fveq1d 5605 |
. . 3
|
| 4 | 3 | adantr 276 |
. 2
|
| 5 | eqid 2209 |
. . 3
| |
| 6 | sseq1 3227 |
. . . . 5
| |
| 7 | 6 | rabbidv 2768 |
. . . 4
|
| 8 | 7 | inteqd 3907 |
. . 3
|
| 9 | 1 | topopn 14647 |
. . . . 5
|
| 10 | elpw2g 4219 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 11 | biimpar 297 |
. . 3
|
| 13 | 1 | topcld 14748 |
. . . . 5
|
| 14 | sseq2 3228 |
. . . . . 6
| |
| 15 | 14 | rspcev 2887 |
. . . . 5
|
| 16 | 13, 15 | sylan 283 |
. . . 4
|
| 17 | intexrabim 4216 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | 5, 8, 12, 18 | fvmptd3 5701 |
. 2
|
| 20 | 4, 19 | eqtrd 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-top 14637 df-cld 14734 df-cls 14736 |
| This theorem is referenced by: cldcls 14753 clsss 14757 sscls 14759 |
| Copyright terms: Public domain | W3C validator |