| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intid | GIF version | ||
| Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) |
| Ref | Expression |
|---|---|
| intid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| intid | ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snex 4218 | . . 3 ⊢ {𝐴} ∈ V |
| 3 | eleq2 2260 | . . . 4 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
| 4 | 1 | snid 3653 | . . . 4 ⊢ 𝐴 ∈ {𝐴} |
| 5 | 3, 4 | intmin3 3901 | . . 3 ⊢ ({𝐴} ∈ V → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴} |
| 7 | 1 | elintab 3885 | . . . 4 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥)) |
| 8 | id 19 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | |
| 9 | 7, 8 | mpgbir 1467 | . . 3 ⊢ 𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} |
| 10 | snssi 3766 | . . 3 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} → {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} |
| 12 | 6, 11 | eqssi 3199 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 ⊆ wss 3157 {csn 3622 ∩ cint 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-int 3875 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |