ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intid GIF version

Theorem intid 4202
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
Hypothesis
Ref Expression
intid.1 𝐴 ∈ V
Assertion
Ref Expression
intid {𝑥𝐴𝑥} = {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem intid
StepHypRef Expression
1 intid.1 . . . 4 𝐴 ∈ V
21snex 4164 . . 3 {𝐴} ∈ V
3 eleq2 2230 . . . 4 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
41snid 3607 . . . 4 𝐴 ∈ {𝐴}
53, 4intmin3 3851 . . 3 ({𝐴} ∈ V → {𝑥𝐴𝑥} ⊆ {𝐴})
62, 5ax-mp 5 . 2 {𝑥𝐴𝑥} ⊆ {𝐴}
71elintab 3835 . . . 4 (𝐴 {𝑥𝐴𝑥} ↔ ∀𝑥(𝐴𝑥𝐴𝑥))
8 id 19 . . . 4 (𝐴𝑥𝐴𝑥)
97, 8mpgbir 1441 . . 3 𝐴 {𝑥𝐴𝑥}
10 snssi 3717 . . 3 (𝐴 {𝑥𝐴𝑥} → {𝐴} ⊆ {𝑥𝐴𝑥})
119, 10ax-mp 5 . 2 {𝐴} ⊆ {𝑥𝐴𝑥}
126, 11eqssi 3158 1 {𝑥𝐴𝑥} = {𝐴}
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  {cab 2151  Vcvv 2726  wss 3116  {csn 3576   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-int 3825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator