| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intid | GIF version | ||
| Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) |
| Ref | Expression |
|---|---|
| intid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| intid | ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snex 4233 | . . 3 ⊢ {𝐴} ∈ V |
| 3 | eleq2 2270 | . . . 4 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
| 4 | 1 | snid 3665 | . . . 4 ⊢ 𝐴 ∈ {𝐴} |
| 5 | 3, 4 | intmin3 3914 | . . 3 ⊢ ({𝐴} ∈ V → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴} |
| 7 | 1 | elintab 3898 | . . . 4 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥)) |
| 8 | id 19 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | |
| 9 | 7, 8 | mpgbir 1477 | . . 3 ⊢ 𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} |
| 10 | snssi 3779 | . . 3 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} → {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} |
| 12 | 6, 11 | eqssi 3210 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {cab 2192 Vcvv 2773 ⊆ wss 3167 {csn 3634 ∩ cint 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-int 3888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |