ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsng GIF version

Theorem intsng 3858
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 3590 . . 3 {𝐴} = {𝐴, 𝐴}
21inteqi 3828 . 2 {𝐴} = {𝐴, 𝐴}
3 intprg 3857 . . . 4 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} = (𝐴𝐴))
43anidms 395 . . 3 (𝐴𝑉 {𝐴, 𝐴} = (𝐴𝐴))
5 inidm 3331 . . 3 (𝐴𝐴) = 𝐴
64, 5eqtrdi 2215 . 2 (𝐴𝑉 {𝐴, 𝐴} = 𝐴)
72, 6syl5eq 2211 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  cin 3115  {csn 3576  {cpr 3577   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-sn 3582  df-pr 3583  df-int 3825
This theorem is referenced by:  intsn  3859  op1stbg  4457  riinint  4865
  Copyright terms: Public domain W3C validator