ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsng GIF version

Theorem intsng 3909
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 3637 . . 3 {𝐴} = {𝐴, 𝐴}
21inteqi 3879 . 2 {𝐴} = {𝐴, 𝐴}
3 intprg 3908 . . . 4 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} = (𝐴𝐴))
43anidms 397 . . 3 (𝐴𝑉 {𝐴, 𝐴} = (𝐴𝐴))
5 inidm 3373 . . 3 (𝐴𝐴) = 𝐴
64, 5eqtrdi 2245 . 2 (𝐴𝑉 {𝐴, 𝐴} = 𝐴)
72, 6eqtrid 2241 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cin 3156  {csn 3623  {cpr 3624   cint 3875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-sn 3629  df-pr 3630  df-int 3876
This theorem is referenced by:  intsn  3910  op1stbg  4515  riinint  4928
  Copyright terms: Public domain W3C validator