ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsng GIF version

Theorem intsng 3880
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 3608 . . 3 {𝐴} = {𝐴, 𝐴}
21inteqi 3850 . 2 {𝐴} = {𝐴, 𝐴}
3 intprg 3879 . . . 4 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} = (𝐴𝐴))
43anidms 397 . . 3 (𝐴𝑉 {𝐴, 𝐴} = (𝐴𝐴))
5 inidm 3346 . . 3 (𝐴𝐴) = 𝐴
64, 5eqtrdi 2226 . 2 (𝐴𝑉 {𝐴, 𝐴} = 𝐴)
72, 6eqtrid 2222 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cin 3130  {csn 3594  {cpr 3595   cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-sn 3600  df-pr 3601  df-int 3847
This theorem is referenced by:  intsn  3881  op1stbg  4481  riinint  4890
  Copyright terms: Public domain W3C validator