| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intsng | GIF version | ||
| Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| intsng | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3648 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | inteqi 3891 | . 2 ⊢ ∩ {𝐴} = ∩ {𝐴, 𝐴} |
| 3 | intprg 3920 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) | |
| 4 | 3 | anidms 397 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) |
| 5 | inidm 3383 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 6 | 4, 5 | eqtrdi 2255 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = 𝐴) |
| 7 | 2, 6 | eqtrid 2251 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∩ cin 3166 {csn 3634 {cpr 3635 ∩ cint 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3171 df-in 3173 df-sn 3640 df-pr 3641 df-int 3888 |
| This theorem is referenced by: intsn 3922 op1stbg 4530 riinint 4944 |
| Copyright terms: Public domain | W3C validator |