![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intsng | GIF version |
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
intsng | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3633 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | inteqi 3875 | . 2 ⊢ ∩ {𝐴} = ∩ {𝐴, 𝐴} |
3 | intprg 3904 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) | |
4 | 3 | anidms 397 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) |
5 | inidm 3369 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
6 | 4, 5 | eqtrdi 2242 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = 𝐴) |
7 | 2, 6 | eqtrid 2238 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∩ cin 3153 {csn 3619 {cpr 3620 ∩ cint 3871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3158 df-in 3160 df-sn 3625 df-pr 3626 df-int 3872 |
This theorem is referenced by: intsn 3906 op1stbg 4511 riinint 4924 |
Copyright terms: Public domain | W3C validator |