Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > op1stbg | Unicode version |
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.) |
Ref | Expression |
---|---|
op1stbg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 3756 | . . . . 5 | |
2 | 1 | inteqd 3829 | . . . 4 |
3 | snexg 4163 | . . . . . 6 | |
4 | prexg 4189 | . . . . . 6 | |
5 | intprg 3857 | . . . . . 6 | |
6 | 3, 4, 5 | syl2an2r 585 | . . . . 5 |
7 | snsspr1 3721 | . . . . . 6 | |
8 | df-ss 3129 | . . . . . 6 | |
9 | 7, 8 | mpbi 144 | . . . . 5 |
10 | 6, 9 | eqtrdi 2215 | . . . 4 |
11 | 2, 10 | eqtrd 2198 | . . 3 |
12 | 11 | inteqd 3829 | . 2 |
13 | intsng 3858 | . . 3 | |
14 | 13 | adantr 274 | . 2 |
15 | 12, 14 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2726 cin 3115 wss 3116 csn 3576 cpr 3577 cop 3579 cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-int 3825 |
This theorem is referenced by: elxp5 5092 fundmen 6772 |
Copyright terms: Public domain | W3C validator |