| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1stbg | Unicode version | ||
| Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.) |
| Ref | Expression |
|---|---|
| op1stbg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg 3817 |
. . . . 5
| |
| 2 | 1 | inteqd 3890 |
. . . 4
|
| 3 | snexg 4229 |
. . . . . 6
| |
| 4 | prexg 4256 |
. . . . . 6
| |
| 5 | intprg 3918 |
. . . . . 6
| |
| 6 | 3, 4, 5 | syl2an2r 595 |
. . . . 5
|
| 7 | snsspr1 3781 |
. . . . . 6
| |
| 8 | df-ss 3179 |
. . . . . 6
| |
| 9 | 7, 8 | mpbi 145 |
. . . . 5
|
| 10 | 6, 9 | eqtrdi 2254 |
. . . 4
|
| 11 | 2, 10 | eqtrd 2238 |
. . 3
|
| 12 | 11 | inteqd 3890 |
. 2
|
| 13 | intsng 3919 |
. . 3
| |
| 14 | 13 | adantr 276 |
. 2
|
| 15 | 12, 14 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-int 3886 |
| This theorem is referenced by: elxp5 5172 fundmen 6900 |
| Copyright terms: Public domain | W3C validator |