| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1stbg | Unicode version | ||
| Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.) |
| Ref | Expression |
|---|---|
| op1stbg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg 3807 |
. . . . 5
| |
| 2 | 1 | inteqd 3880 |
. . . 4
|
| 3 | snexg 4218 |
. . . . . 6
| |
| 4 | prexg 4245 |
. . . . . 6
| |
| 5 | intprg 3908 |
. . . . . 6
| |
| 6 | 3, 4, 5 | syl2an2r 595 |
. . . . 5
|
| 7 | snsspr1 3771 |
. . . . . 6
| |
| 8 | df-ss 3170 |
. . . . . 6
| |
| 9 | 7, 8 | mpbi 145 |
. . . . 5
|
| 10 | 6, 9 | eqtrdi 2245 |
. . . 4
|
| 11 | 2, 10 | eqtrd 2229 |
. . 3
|
| 12 | 11 | inteqd 3880 |
. 2
|
| 13 | intsng 3909 |
. . 3
| |
| 14 | 13 | adantr 276 |
. 2
|
| 15 | 12, 14 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-int 3876 |
| This theorem is referenced by: elxp5 5159 fundmen 6874 |
| Copyright terms: Public domain | W3C validator |