ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stbg Unicode version

Theorem op1stbg 4457
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
op1stbg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| |^| <. A ,  B >.  =  A )

Proof of Theorem op1stbg
StepHypRef Expression
1 dfopg 3756 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
21inteqd 3829 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| <. A ,  B >.  =  |^| { { A } ,  { A ,  B } } )
3 snexg 4163 . . . . . 6  |-  ( A  e.  V  ->  { A }  e.  _V )
4 prexg 4189 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )
5 intprg 3857 . . . . . 6  |-  ( ( { A }  e.  _V  /\  { A ,  B }  e.  _V )  ->  |^| { { A } ,  { A ,  B } }  =  ( { A }  i^i  { A ,  B }
) )
63, 4, 5syl2an2r 585 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { { A } ,  { A ,  B } }  =  ( { A }  i^i  { A ,  B }
) )
7 snsspr1 3721 . . . . . 6  |-  { A }  C_  { A ,  B }
8 df-ss 3129 . . . . . 6  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  i^i  { A ,  B } )  =  { A } )
97, 8mpbi 144 . . . . 5  |-  ( { A }  i^i  { A ,  B }
)  =  { A }
106, 9eqtrdi 2215 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { { A } ,  { A ,  B } }  =  { A } )
112, 10eqtrd 2198 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| <. A ,  B >.  =  { A }
)
1211inteqd 3829 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| |^| <. A ,  B >.  =  |^| { A } )
13 intsng 3858 . . 3  |-  ( A  e.  V  ->  |^| { A }  =  A )
1413adantr 274 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A }  =  A )
1512, 14eqtrd 2198 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| |^| <. A ,  B >.  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    i^i cin 3115    C_ wss 3116   {csn 3576   {cpr 3577   <.cop 3579   |^|cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-int 3825
This theorem is referenced by:  elxp5  5092  fundmen  6772
  Copyright terms: Public domain W3C validator