ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intprg Unicode version

Theorem intprg 3903
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3902. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
intprg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )

Proof of Theorem intprg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 3695 . . . 4  |-  ( x  =  A  ->  { x ,  y }  =  { A ,  y } )
21inteqd 3875 . . 3  |-  ( x  =  A  ->  |^| { x ,  y }  =  |^| { A ,  y } )
3 ineq1 3353 . . 3  |-  ( x  =  A  ->  (
x  i^i  y )  =  ( A  i^i  y ) )
42, 3eqeq12d 2208 . 2  |-  ( x  =  A  ->  ( |^| { x ,  y }  =  ( x  i^i  y )  <->  |^| { A ,  y }  =  ( A  i^i  y
) ) )
5 preq2 3696 . . . 4  |-  ( y  =  B  ->  { A ,  y }  =  { A ,  B }
)
65inteqd 3875 . . 3  |-  ( y  =  B  ->  |^| { A ,  y }  =  |^| { A ,  B } )
7 ineq2 3354 . . 3  |-  ( y  =  B  ->  ( A  i^i  y )  =  ( A  i^i  B
) )
86, 7eqeq12d 2208 . 2  |-  ( y  =  B  ->  ( |^| { A ,  y }  =  ( A  i^i  y )  <->  |^| { A ,  B }  =  ( A  i^i  B ) ) )
9 vex 2763 . . 3  |-  x  e. 
_V
10 vex 2763 . . 3  |-  y  e. 
_V
119, 10intpr 3902 . 2  |-  |^| { x ,  y }  =  ( x  i^i  y
)
124, 8, 11vtocl2g 2824 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    i^i cin 3152   {cpr 3619   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-sn 3624  df-pr 3625  df-int 3871
This theorem is referenced by:  intsng  3904  op1stbg  4510  subrngin  13709  subrgin  13740  lssincl  13881
  Copyright terms: Public domain W3C validator