ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intprg Unicode version

Theorem intprg 3879
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3878. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
intprg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )

Proof of Theorem intprg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 3671 . . . 4  |-  ( x  =  A  ->  { x ,  y }  =  { A ,  y } )
21inteqd 3851 . . 3  |-  ( x  =  A  ->  |^| { x ,  y }  =  |^| { A ,  y } )
3 ineq1 3331 . . 3  |-  ( x  =  A  ->  (
x  i^i  y )  =  ( A  i^i  y ) )
42, 3eqeq12d 2192 . 2  |-  ( x  =  A  ->  ( |^| { x ,  y }  =  ( x  i^i  y )  <->  |^| { A ,  y }  =  ( A  i^i  y
) ) )
5 preq2 3672 . . . 4  |-  ( y  =  B  ->  { A ,  y }  =  { A ,  B }
)
65inteqd 3851 . . 3  |-  ( y  =  B  ->  |^| { A ,  y }  =  |^| { A ,  B } )
7 ineq2 3332 . . 3  |-  ( y  =  B  ->  ( A  i^i  y )  =  ( A  i^i  B
) )
86, 7eqeq12d 2192 . 2  |-  ( y  =  B  ->  ( |^| { A ,  y }  =  ( A  i^i  y )  <->  |^| { A ,  B }  =  ( A  i^i  B ) ) )
9 vex 2742 . . 3  |-  x  e. 
_V
10 vex 2742 . . 3  |-  y  e. 
_V
119, 10intpr 3878 . 2  |-  |^| { x ,  y }  =  ( x  i^i  y
)
124, 8, 11vtocl2g 2803 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    i^i cin 3130   {cpr 3595   |^|cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-sn 3600  df-pr 3601  df-int 3847
This theorem is referenced by:  intsng  3880  op1stbg  4481  subrgin  13370  lssincl  13477
  Copyright terms: Public domain W3C validator