Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intprg | Unicode version |
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3872. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) |
Ref | Expression |
---|---|
intprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3666 | . . . 4 | |
2 | 1 | inteqd 3845 | . . 3 |
3 | ineq1 3327 | . . 3 | |
4 | 2, 3 | eqeq12d 2190 | . 2 |
5 | preq2 3667 | . . . 4 | |
6 | 5 | inteqd 3845 | . . 3 |
7 | ineq2 3328 | . . 3 | |
8 | 6, 7 | eqeq12d 2190 | . 2 |
9 | vex 2738 | . . 3 | |
10 | vex 2738 | . . 3 | |
11 | 9, 10 | intpr 3872 | . 2 |
12 | 4, 8, 11 | vtocl2g 2799 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 cin 3126 cpr 3590 cint 3840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-un 3131 df-in 3133 df-sn 3595 df-pr 3596 df-int 3841 |
This theorem is referenced by: intsng 3874 op1stbg 4473 |
Copyright terms: Public domain | W3C validator |