ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intprg Unicode version

Theorem intprg 3955
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3954. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
intprg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )

Proof of Theorem intprg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 3743 . . . 4  |-  ( x  =  A  ->  { x ,  y }  =  { A ,  y } )
21inteqd 3927 . . 3  |-  ( x  =  A  ->  |^| { x ,  y }  =  |^| { A ,  y } )
3 ineq1 3398 . . 3  |-  ( x  =  A  ->  (
x  i^i  y )  =  ( A  i^i  y ) )
42, 3eqeq12d 2244 . 2  |-  ( x  =  A  ->  ( |^| { x ,  y }  =  ( x  i^i  y )  <->  |^| { A ,  y }  =  ( A  i^i  y
) ) )
5 preq2 3744 . . . 4  |-  ( y  =  B  ->  { A ,  y }  =  { A ,  B }
)
65inteqd 3927 . . 3  |-  ( y  =  B  ->  |^| { A ,  y }  =  |^| { A ,  B } )
7 ineq2 3399 . . 3  |-  ( y  =  B  ->  ( A  i^i  y )  =  ( A  i^i  B
) )
86, 7eqeq12d 2244 . 2  |-  ( y  =  B  ->  ( |^| { A ,  y }  =  ( A  i^i  y )  <->  |^| { A ,  B }  =  ( A  i^i  B ) ) )
9 vex 2802 . . 3  |-  x  e. 
_V
10 vex 2802 . . 3  |-  y  e. 
_V
119, 10intpr 3954 . 2  |-  |^| { x ,  y }  =  ( x  i^i  y
)
124, 8, 11vtocl2g 2865 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    i^i cin 3196   {cpr 3667   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-sn 3672  df-pr 3673  df-int 3923
This theorem is referenced by:  intsng  3956  op1stbg  4567  subrngin  14162  subrgin  14193  lssincl  14334
  Copyright terms: Public domain W3C validator