| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intprg | Unicode version | ||
| Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3906. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) |
| Ref | Expression |
|---|---|
| intprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3699 |
. . . 4
| |
| 2 | 1 | inteqd 3879 |
. . 3
|
| 3 | ineq1 3357 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2211 |
. 2
|
| 5 | preq2 3700 |
. . . 4
| |
| 6 | 5 | inteqd 3879 |
. . 3
|
| 7 | ineq2 3358 |
. . 3
| |
| 8 | 6, 7 | eqeq12d 2211 |
. 2
|
| 9 | vex 2766 |
. . 3
| |
| 10 | vex 2766 |
. . 3
| |
| 11 | 9, 10 | intpr 3906 |
. 2
|
| 12 | 4, 8, 11 | vtocl2g 2828 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-int 3875 |
| This theorem is referenced by: intsng 3908 op1stbg 4514 subrngin 13769 subrgin 13800 lssincl 13941 |
| Copyright terms: Public domain | W3C validator |