Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intprg | Unicode version |
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3863. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) |
Ref | Expression |
---|---|
intprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3660 | . . . 4 | |
2 | 1 | inteqd 3836 | . . 3 |
3 | ineq1 3321 | . . 3 | |
4 | 2, 3 | eqeq12d 2185 | . 2 |
5 | preq2 3661 | . . . 4 | |
6 | 5 | inteqd 3836 | . . 3 |
7 | ineq2 3322 | . . 3 | |
8 | 6, 7 | eqeq12d 2185 | . 2 |
9 | vex 2733 | . . 3 | |
10 | vex 2733 | . . 3 | |
11 | 9, 10 | intpr 3863 | . 2 |
12 | 4, 8, 11 | vtocl2g 2794 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cin 3120 cpr 3584 cint 3831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-sn 3589 df-pr 3590 df-int 3832 |
This theorem is referenced by: intsng 3865 op1stbg 4464 |
Copyright terms: Public domain | W3C validator |