ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intprg Unicode version

Theorem intprg 3799
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3798. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
intprg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )

Proof of Theorem intprg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 3595 . . . 4  |-  ( x  =  A  ->  { x ,  y }  =  { A ,  y } )
21inteqd 3771 . . 3  |-  ( x  =  A  ->  |^| { x ,  y }  =  |^| { A ,  y } )
3 ineq1 3265 . . 3  |-  ( x  =  A  ->  (
x  i^i  y )  =  ( A  i^i  y ) )
42, 3eqeq12d 2152 . 2  |-  ( x  =  A  ->  ( |^| { x ,  y }  =  ( x  i^i  y )  <->  |^| { A ,  y }  =  ( A  i^i  y
) ) )
5 preq2 3596 . . . 4  |-  ( y  =  B  ->  { A ,  y }  =  { A ,  B }
)
65inteqd 3771 . . 3  |-  ( y  =  B  ->  |^| { A ,  y }  =  |^| { A ,  B } )
7 ineq2 3266 . . 3  |-  ( y  =  B  ->  ( A  i^i  y )  =  ( A  i^i  B
) )
86, 7eqeq12d 2152 . 2  |-  ( y  =  B  ->  ( |^| { A ,  y }  =  ( A  i^i  y )  <->  |^| { A ,  B }  =  ( A  i^i  B ) ) )
9 vex 2684 . . 3  |-  x  e. 
_V
10 vex 2684 . . 3  |-  y  e. 
_V
119, 10intpr 3798 . 2  |-  |^| { x ,  y }  =  ( x  i^i  y
)
124, 8, 11vtocl2g 2745 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    i^i cin 3065   {cpr 3523   |^|cint 3766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-v 2683  df-un 3070  df-in 3072  df-sn 3528  df-pr 3529  df-int 3767
This theorem is referenced by:  intsng  3800  op1stbg  4395
  Copyright terms: Public domain W3C validator