| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intprg | Unicode version | ||
| Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3954. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) |
| Ref | Expression |
|---|---|
| intprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3743 |
. . . 4
| |
| 2 | 1 | inteqd 3927 |
. . 3
|
| 3 | ineq1 3398 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2244 |
. 2
|
| 5 | preq2 3744 |
. . . 4
| |
| 6 | 5 | inteqd 3927 |
. . 3
|
| 7 | ineq2 3399 |
. . 3
| |
| 8 | 6, 7 | eqeq12d 2244 |
. 2
|
| 9 | vex 2802 |
. . 3
| |
| 10 | vex 2802 |
. . 3
| |
| 11 | 9, 10 | intpr 3954 |
. 2
|
| 12 | 4, 8, 11 | vtocl2g 2865 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-sn 3672 df-pr 3673 df-int 3923 |
| This theorem is referenced by: intsng 3956 op1stbg 4567 subrngin 14162 subrgin 14193 lssincl 14334 |
| Copyright terms: Public domain | W3C validator |