ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssunim GIF version

Theorem intssunim 3846
Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssunim (∃𝑥 𝑥𝐴 𝐴 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem intssunim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.2m 3495 . . . 4 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝑦𝑥) → ∃𝑥𝐴 𝑦𝑥)
21ex 114 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝑦𝑥 → ∃𝑥𝐴 𝑦𝑥))
3 vex 2729 . . . 4 𝑦 ∈ V
43elint2 3831 . . 3 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
5 eluni2 3793 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
62, 4, 53imtr4g 204 . 2 (∃𝑥 𝑥𝐴 → (𝑦 𝐴𝑦 𝐴))
76ssrdv 3148 1 (∃𝑥 𝑥𝐴 𝐴 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1480  wcel 2136  wral 2444  wrex 2445  wss 3116   cuni 3789   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-int 3825
This theorem is referenced by:  intssuni2m  3848
  Copyright terms: Public domain W3C validator