ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssunim GIF version

Theorem intssunim 3909
Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssunim (∃𝑥 𝑥𝐴 𝐴 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem intssunim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.2m 3548 . . . 4 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝑦𝑥) → ∃𝑥𝐴 𝑦𝑥)
21ex 115 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝑦𝑥 → ∃𝑥𝐴 𝑦𝑥))
3 vex 2776 . . . 4 𝑦 ∈ V
43elint2 3894 . . 3 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
5 eluni2 3856 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
62, 4, 53imtr4g 205 . 2 (∃𝑥 𝑥𝐴 → (𝑦 𝐴𝑦 𝐴))
76ssrdv 3200 1 (∃𝑥 𝑥𝐴 𝐴 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1516  wcel 2177  wral 2485  wrex 2486  wss 3167   cuni 3852   cint 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3173  df-ss 3180  df-uni 3853  df-int 3888
This theorem is referenced by:  intssuni2m  3911  subgintm  13578
  Copyright terms: Public domain W3C validator