Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intssunim | GIF version |
Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
intssunim | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2m 3501 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
2 | 1 | ex 114 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
3 | vex 2733 | . . . 4 ⊢ 𝑦 ∈ V | |
4 | 3 | elint2 3838 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
5 | eluni2 3800 | . . 3 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
6 | 2, 4, 5 | 3imtr4g 204 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ ∩ 𝐴 → 𝑦 ∈ ∪ 𝐴)) |
7 | 6 | ssrdv 3153 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 ∪ cuni 3796 ∩ cint 3831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-int 3832 |
This theorem is referenced by: intssuni2m 3855 |
Copyright terms: Public domain | W3C validator |