Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intssunim | GIF version |
Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
intssunim | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2m 3495 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
2 | 1 | ex 114 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
3 | vex 2729 | . . . 4 ⊢ 𝑦 ∈ V | |
4 | 3 | elint2 3831 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
5 | eluni2 3793 | . . 3 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
6 | 2, 4, 5 | 3imtr4g 204 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ ∩ 𝐴 → 𝑦 ∈ ∪ 𝐴)) |
7 | 6 | ssrdv 3148 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ⊆ wss 3116 ∪ cuni 3789 ∩ cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-int 3825 |
This theorem is referenced by: intssuni2m 3848 |
Copyright terms: Public domain | W3C validator |