ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssunim GIF version

Theorem intssunim 3945
Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssunim (∃𝑥 𝑥𝐴 𝐴 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem intssunim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.2m 3578 . . . 4 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝑦𝑥) → ∃𝑥𝐴 𝑦𝑥)
21ex 115 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝑦𝑥 → ∃𝑥𝐴 𝑦𝑥))
3 vex 2802 . . . 4 𝑦 ∈ V
43elint2 3930 . . 3 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
5 eluni2 3892 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
62, 4, 53imtr4g 205 . 2 (∃𝑥 𝑥𝐴 → (𝑦 𝐴𝑦 𝐴))
76ssrdv 3230 1 (∃𝑥 𝑥𝐴 𝐴 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1538  wcel 2200  wral 2508  wrex 2509  wss 3197   cuni 3888   cint 3923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3889  df-int 3924
This theorem is referenced by:  intssuni2m  3947  subgintm  13743
  Copyright terms: Public domain W3C validator