ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssunim GIF version

Theorem intssunim 3868
Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssunim (∃𝑥 𝑥𝐴 𝐴 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem intssunim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.2m 3511 . . . 4 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝑦𝑥) → ∃𝑥𝐴 𝑦𝑥)
21ex 115 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝑦𝑥 → ∃𝑥𝐴 𝑦𝑥))
3 vex 2742 . . . 4 𝑦 ∈ V
43elint2 3853 . . 3 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
5 eluni2 3815 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
62, 4, 53imtr4g 205 . 2 (∃𝑥 𝑥𝐴 → (𝑦 𝐴𝑦 𝐴))
76ssrdv 3163 1 (∃𝑥 𝑥𝐴 𝐴 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1492  wcel 2148  wral 2455  wrex 2456  wss 3131   cuni 3811   cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-int 3847
This theorem is referenced by:  intssuni2m  3870  subgintm  13063
  Copyright terms: Public domain W3C validator