| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intssunim | GIF version | ||
| Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
| Ref | Expression |
|---|---|
| intssunim | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2m 3548 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
| 3 | vex 2776 | . . . 4 ⊢ 𝑦 ∈ V | |
| 4 | 3 | elint2 3894 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
| 5 | eluni2 3856 | . . 3 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 6 | 2, 4, 5 | 3imtr4g 205 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ ∩ 𝐴 → 𝑦 ∈ ∪ 𝐴)) |
| 7 | 6 | ssrdv 3200 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ⊆ wss 3167 ∪ cuni 3852 ∩ cint 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3173 df-ss 3180 df-uni 3853 df-int 3888 |
| This theorem is referenced by: intssuni2m 3911 subgintm 13578 |
| Copyright terms: Public domain | W3C validator |