Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluni2 | Unicode version |
Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
eluni2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1596 | . 2 | |
2 | eluni 3792 | . 2 | |
3 | df-rex 2450 | . 2 | |
4 | 1, 2, 3 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wex 1480 wcel 2136 wrex 2445 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-uni 3790 |
This theorem is referenced by: uni0b 3814 intssunim 3846 iuncom4 3873 inuni 4134 ssorduni 4464 unon 4488 cnvuni 4790 chfnrn 5596 isbasis3g 12684 eltg2b 12694 tgcl 12704 epttop 12730 txuni2 12896 |
Copyright terms: Public domain | W3C validator |