| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluni2 | Unicode version | ||
| Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| eluni2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1631 |
. 2
| |
| 2 | eluni 3853 |
. 2
| |
| 3 | df-rex 2490 |
. 2
| |
| 4 | 1, 2, 3 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-uni 3851 |
| This theorem is referenced by: uni0b 3875 intssunim 3907 iuncom4 3934 inuni 4199 ssorduni 4535 unon 4559 cnvuni 4864 chfnrn 5691 zrhval 14379 isbasis3g 14518 eltg2b 14526 tgcl 14536 epttop 14562 txuni2 14728 |
| Copyright terms: Public domain | W3C validator |