Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluni2 Unicode version

Theorem eluni2 3708
 Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
eluni2
Distinct variable groups:   ,   ,

Proof of Theorem eluni2
StepHypRef Expression
1 exancom 1570 . 2
2 eluni 3707 . 2
3 df-rex 2397 . 2
41, 2, 33bitr4i 211 1
 Colors of variables: wff set class Syntax hints:   wa 103   wb 104  wex 1451   wcel 1463  wrex 2392  cuni 3704 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-rex 2397  df-v 2660  df-uni 3705 This theorem is referenced by:  uni0b  3729  intssunim  3761  iuncom4  3788  inuni  4048  ssorduni  4371  unon  4395  cnvuni  4693  chfnrn  5497  isbasis3g  12108  eltg2b  12118  tgcl  12128  epttop  12154  txuni2  12320
 Copyright terms: Public domain W3C validator