ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isbasisg Unicode version

Theorem isbasisg 12054
Description: Express the predicate "the set  B is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
isbasisg  |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
Distinct variable group:    x, y, B
Allowed substitution hints:    C( x, y)

Proof of Theorem isbasisg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ineq1 3236 . . . . . 6  |-  ( z  =  B  ->  (
z  i^i  ~P (
x  i^i  y )
)  =  ( B  i^i  ~P ( x  i^i  y ) ) )
21unieqd 3713 . . . . 5  |-  ( z  =  B  ->  U. (
z  i^i  ~P (
x  i^i  y )
)  =  U. ( B  i^i  ~P ( x  i^i  y ) ) )
32sseq2d 3093 . . . 4  |-  ( z  =  B  ->  (
( x  i^i  y
)  C_  U. (
z  i^i  ~P (
x  i^i  y )
)  <->  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
43raleqbi1dv 2608 . . 3  |-  ( z  =  B  ->  ( A. y  e.  z 
( x  i^i  y
)  C_  U. (
z  i^i  ~P (
x  i^i  y )
)  <->  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
54raleqbi1dv 2608 . 2  |-  ( z  =  B  ->  ( A. x  e.  z  A. y  e.  z 
( x  i^i  y
)  C_  U. (
z  i^i  ~P (
x  i^i  y )
)  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
6 df-bases 12053 . 2  |-  TopBases  =  {
z  |  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  C_  U. (
z  i^i  ~P (
x  i^i  y )
) }
75, 6elab2g 2800 1  |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1314    e. wcel 1463   A.wral 2390    i^i cin 3036    C_ wss 3037   ~Pcpw 3476   U.cuni 3702   TopBasesctb 12052
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-in 3043  df-ss 3050  df-uni 3703  df-bases 12053
This theorem is referenced by:  isbasis2g  12055  basis1  12057  baspartn  12060
  Copyright terms: Public domain W3C validator