Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isbasisg | Unicode version |
Description: Express the predicate "the set is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
isbasisg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3301 | . . . . . 6 | |
2 | 1 | unieqd 3783 | . . . . 5 |
3 | 2 | sseq2d 3158 | . . . 4 |
4 | 3 | raleqbi1dv 2660 | . . 3 |
5 | 4 | raleqbi1dv 2660 | . 2 |
6 | df-bases 12401 | . 2 | |
7 | 5, 6 | elab2g 2859 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wcel 2128 wral 2435 cin 3101 wss 3102 cpw 3543 cuni 3772 ctb 12400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-in 3108 df-ss 3115 df-uni 3773 df-bases 12401 |
This theorem is referenced by: isbasis2g 12403 basis1 12405 baspartn 12408 |
Copyright terms: Public domain | W3C validator |