ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basis1 Unicode version

Theorem basis1 13632
Description: Property of a basis. (Contributed by NM, 16-Jul-2006.)
Assertion
Ref Expression
basis1  |-  ( ( B  e.  TopBases  /\  C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) )

Proof of Theorem basis1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisg 13629 . . . 4  |-  ( B  e.  TopBases  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) ) )
21ibi 176 . . 3  |-  ( B  e.  TopBases  ->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
3 ineq1 3331 . . . . 5  |-  ( x  =  C  ->  (
x  i^i  y )  =  ( C  i^i  y ) )
43pweqd 3582 . . . . . . 7  |-  ( x  =  C  ->  ~P ( x  i^i  y
)  =  ~P ( C  i^i  y ) )
54ineq2d 3338 . . . . . 6  |-  ( x  =  C  ->  ( B  i^i  ~P ( x  i^i  y ) )  =  ( B  i^i  ~P ( C  i^i  y
) ) )
65unieqd 3822 . . . . 5  |-  ( x  =  C  ->  U. ( B  i^i  ~P ( x  i^i  y ) )  =  U. ( B  i^i  ~P ( C  i^i  y ) ) )
73, 6sseq12d 3188 . . . 4  |-  ( x  =  C  ->  (
( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <-> 
( C  i^i  y
)  C_  U. ( B  i^i  ~P ( C  i^i  y ) ) ) )
8 ineq2 3332 . . . . 5  |-  ( y  =  D  ->  ( C  i^i  y )  =  ( C  i^i  D
) )
98pweqd 3582 . . . . . . 7  |-  ( y  =  D  ->  ~P ( C  i^i  y
)  =  ~P ( C  i^i  D ) )
109ineq2d 3338 . . . . . 6  |-  ( y  =  D  ->  ( B  i^i  ~P ( C  i^i  y ) )  =  ( B  i^i  ~P ( C  i^i  D
) ) )
1110unieqd 3822 . . . . 5  |-  ( y  =  D  ->  U. ( B  i^i  ~P ( C  i^i  y ) )  =  U. ( B  i^i  ~P ( C  i^i  D ) ) )
128, 11sseq12d 3188 . . . 4  |-  ( y  =  D  ->  (
( C  i^i  y
)  C_  U. ( B  i^i  ~P ( C  i^i  y ) )  <-> 
( C  i^i  D
)  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
137, 12rspc2v 2856 . . 3  |-  ( ( C  e.  B  /\  D  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
142, 13syl5com 29 . 2  |-  ( B  e.  TopBases  ->  ( ( C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
15143impib 1201 1  |-  ( ( B  e.  TopBases  /\  C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    i^i cin 3130    C_ wss 3131   ~Pcpw 3577   U.cuni 3811   TopBasesctb 13627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-uni 3812  df-bases 13628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator