ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basis1 Unicode version

Theorem basis1 14215
Description: Property of a basis. (Contributed by NM, 16-Jul-2006.)
Assertion
Ref Expression
basis1  |-  ( ( B  e.  TopBases  /\  C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) )

Proof of Theorem basis1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisg 14212 . . . 4  |-  ( B  e.  TopBases  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) ) )
21ibi 176 . . 3  |-  ( B  e.  TopBases  ->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
3 ineq1 3353 . . . . 5  |-  ( x  =  C  ->  (
x  i^i  y )  =  ( C  i^i  y ) )
43pweqd 3606 . . . . . . 7  |-  ( x  =  C  ->  ~P ( x  i^i  y
)  =  ~P ( C  i^i  y ) )
54ineq2d 3360 . . . . . 6  |-  ( x  =  C  ->  ( B  i^i  ~P ( x  i^i  y ) )  =  ( B  i^i  ~P ( C  i^i  y
) ) )
65unieqd 3846 . . . . 5  |-  ( x  =  C  ->  U. ( B  i^i  ~P ( x  i^i  y ) )  =  U. ( B  i^i  ~P ( C  i^i  y ) ) )
73, 6sseq12d 3210 . . . 4  |-  ( x  =  C  ->  (
( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <-> 
( C  i^i  y
)  C_  U. ( B  i^i  ~P ( C  i^i  y ) ) ) )
8 ineq2 3354 . . . . 5  |-  ( y  =  D  ->  ( C  i^i  y )  =  ( C  i^i  D
) )
98pweqd 3606 . . . . . . 7  |-  ( y  =  D  ->  ~P ( C  i^i  y
)  =  ~P ( C  i^i  D ) )
109ineq2d 3360 . . . . . 6  |-  ( y  =  D  ->  ( B  i^i  ~P ( C  i^i  y ) )  =  ( B  i^i  ~P ( C  i^i  D
) ) )
1110unieqd 3846 . . . . 5  |-  ( y  =  D  ->  U. ( B  i^i  ~P ( C  i^i  y ) )  =  U. ( B  i^i  ~P ( C  i^i  D ) ) )
128, 11sseq12d 3210 . . . 4  |-  ( y  =  D  ->  (
( C  i^i  y
)  C_  U. ( B  i^i  ~P ( C  i^i  y ) )  <-> 
( C  i^i  D
)  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
137, 12rspc2v 2877 . . 3  |-  ( ( C  e.  B  /\  D  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
142, 13syl5com 29 . 2  |-  ( B  e.  TopBases  ->  ( ( C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
15143impib 1203 1  |-  ( ( B  e.  TopBases  /\  C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    i^i cin 3152    C_ wss 3153   ~Pcpw 3601   U.cuni 3835   TopBasesctb 14210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-uni 3836  df-bases 14211
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator