ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iordsmo Unicode version

Theorem iordsmo 6276
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1  |-  Ord  A
Assertion
Ref Expression
iordsmo  |-  Smo  (  _I  |`  A )

Proof of Theorem iordsmo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 5315 . . 3  |-  (  _I  |`  A )  Fn  A
2 rnresi 4968 . . . 4  |-  ran  (  _I  |`  A )  =  A
3 iordsmo.1 . . . . 5  |-  Ord  A
4 ordsson 4476 . . . . 5  |-  ( Ord 
A  ->  A  C_  On )
53, 4ax-mp 5 . . . 4  |-  A  C_  On
62, 5eqsstri 3179 . . 3  |-  ran  (  _I  |`  A )  C_  On
7 df-f 5202 . . 3  |-  ( (  _I  |`  A ) : A --> On  <->  ( (  _I  |`  A )  Fn  A  /\  ran  (  _I  |`  A )  C_  On ) )
81, 6, 7mpbir2an 937 . 2  |-  (  _I  |`  A ) : A --> On
9 fvresi 5689 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
109adantr 274 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( (  _I  |`  A ) `
 x )  =  x )
11 fvresi 5689 . . . . 5  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
1211adantl 275 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( (  _I  |`  A ) `
 y )  =  y )
1310, 12eleq12d 2241 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( (  _I  |`  A ) `  x
)  e.  ( (  _I  |`  A ) `  y )  <->  x  e.  y ) )
1413biimprd 157 . 2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  y  ->  ( (  _I  |`  A ) `  x
)  e.  ( (  _I  |`  A ) `  y ) ) )
15 dmresi 4946 . 2  |-  dom  (  _I  |`  A )  =  A
168, 3, 14, 15issmo 6267 1  |-  Smo  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141    C_ wss 3121    _I cid 4273   Ord word 4347   Oncon0 4348   ran crn 4612    |` cres 4613    Fn wfn 5193   -->wf 5194   ` cfv 5198   Smo wsmo 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-smo 6265
This theorem is referenced by:  smo0  6277
  Copyright terms: Public domain W3C validator