ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iordsmo Unicode version

Theorem iordsmo 6194
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1  |-  Ord  A
Assertion
Ref Expression
iordsmo  |-  Smo  (  _I  |`  A )

Proof of Theorem iordsmo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 5240 . . 3  |-  (  _I  |`  A )  Fn  A
2 rnresi 4896 . . . 4  |-  ran  (  _I  |`  A )  =  A
3 iordsmo.1 . . . . 5  |-  Ord  A
4 ordsson 4408 . . . . 5  |-  ( Ord 
A  ->  A  C_  On )
53, 4ax-mp 5 . . . 4  |-  A  C_  On
62, 5eqsstri 3129 . . 3  |-  ran  (  _I  |`  A )  C_  On
7 df-f 5127 . . 3  |-  ( (  _I  |`  A ) : A --> On  <->  ( (  _I  |`  A )  Fn  A  /\  ran  (  _I  |`  A )  C_  On ) )
81, 6, 7mpbir2an 926 . 2  |-  (  _I  |`  A ) : A --> On
9 fvresi 5613 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
109adantr 274 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( (  _I  |`  A ) `
 x )  =  x )
11 fvresi 5613 . . . . 5  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
1211adantl 275 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( (  _I  |`  A ) `
 y )  =  y )
1310, 12eleq12d 2210 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( (  _I  |`  A ) `  x
)  e.  ( (  _I  |`  A ) `  y )  <->  x  e.  y ) )
1413biimprd 157 . 2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  y  ->  ( (  _I  |`  A ) `  x
)  e.  ( (  _I  |`  A ) `  y ) ) )
15 dmresi 4874 . 2  |-  dom  (  _I  |`  A )  =  A
168, 3, 14, 15issmo 6185 1  |-  Smo  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331    e. wcel 1480    C_ wss 3071    _I cid 4210   Ord word 4284   Oncon0 4285   ran crn 4540    |` cres 4541    Fn wfn 5118   -->wf 5119   ` cfv 5123   Smo wsmo 6182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-smo 6183
This theorem is referenced by:  smo0  6195
  Copyright terms: Public domain W3C validator