Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iordsmo | Unicode version |
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
iordsmo.1 |
Ref | Expression |
---|---|
iordsmo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 5313 | . . 3 | |
2 | rnresi 4966 | . . . 4 | |
3 | iordsmo.1 | . . . . 5 | |
4 | ordsson 4474 | . . . . 5 | |
5 | 3, 4 | ax-mp 5 | . . . 4 |
6 | 2, 5 | eqsstri 3179 | . . 3 |
7 | df-f 5200 | . . 3 | |
8 | 1, 6, 7 | mpbir2an 937 | . 2 |
9 | fvresi 5687 | . . . . 5 | |
10 | 9 | adantr 274 | . . . 4 |
11 | fvresi 5687 | . . . . 5 | |
12 | 11 | adantl 275 | . . . 4 |
13 | 10, 12 | eleq12d 2241 | . . 3 |
14 | 13 | biimprd 157 | . 2 |
15 | dmresi 4944 | . 2 | |
16 | 8, 3, 14, 15 | issmo 6265 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wcel 2141 wss 3121 cid 4271 word 4345 con0 4346 crn 4610 cres 4611 wfn 5191 wf 5192 cfv 5196 wsmo 6262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-smo 6263 |
This theorem is referenced by: smo0 6275 |
Copyright terms: Public domain | W3C validator |