ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iordsmo Unicode version

Theorem iordsmo 6385
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1  |-  Ord  A
Assertion
Ref Expression
iordsmo  |-  Smo  (  _I  |`  A )

Proof of Theorem iordsmo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 5395 . . 3  |-  (  _I  |`  A )  Fn  A
2 rnresi 5040 . . . 4  |-  ran  (  _I  |`  A )  =  A
3 iordsmo.1 . . . . 5  |-  Ord  A
4 ordsson 4541 . . . . 5  |-  ( Ord 
A  ->  A  C_  On )
53, 4ax-mp 5 . . . 4  |-  A  C_  On
62, 5eqsstri 3225 . . 3  |-  ran  (  _I  |`  A )  C_  On
7 df-f 5276 . . 3  |-  ( (  _I  |`  A ) : A --> On  <->  ( (  _I  |`  A )  Fn  A  /\  ran  (  _I  |`  A )  C_  On ) )
81, 6, 7mpbir2an 945 . 2  |-  (  _I  |`  A ) : A --> On
9 fvresi 5779 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
109adantr 276 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( (  _I  |`  A ) `
 x )  =  x )
11 fvresi 5779 . . . . 5  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
1211adantl 277 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( (  _I  |`  A ) `
 y )  =  y )
1310, 12eleq12d 2276 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( (  _I  |`  A ) `  x
)  e.  ( (  _I  |`  A ) `  y )  <->  x  e.  y ) )
1413biimprd 158 . 2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  y  ->  ( (  _I  |`  A ) `  x
)  e.  ( (  _I  |`  A ) `  y ) ) )
15 dmresi 5015 . 2  |-  dom  (  _I  |`  A )  =  A
168, 3, 14, 15issmo 6376 1  |-  Smo  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176    C_ wss 3166    _I cid 4336   Ord word 4410   Oncon0 4411   ran crn 4677    |` cres 4678    Fn wfn 5267   -->wf 5268   ` cfv 5272   Smo wsmo 6373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-smo 6374
This theorem is referenced by:  smo0  6386
  Copyright terms: Public domain W3C validator