ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iordsmo Unicode version

Theorem iordsmo 6298
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1  |-  Ord  A
Assertion
Ref Expression
iordsmo  |-  Smo  (  _I  |`  A )

Proof of Theorem iordsmo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 5334 . . 3  |-  (  _I  |`  A )  Fn  A
2 rnresi 4986 . . . 4  |-  ran  (  _I  |`  A )  =  A
3 iordsmo.1 . . . . 5  |-  Ord  A
4 ordsson 4492 . . . . 5  |-  ( Ord 
A  ->  A  C_  On )
53, 4ax-mp 5 . . . 4  |-  A  C_  On
62, 5eqsstri 3188 . . 3  |-  ran  (  _I  |`  A )  C_  On
7 df-f 5221 . . 3  |-  ( (  _I  |`  A ) : A --> On  <->  ( (  _I  |`  A )  Fn  A  /\  ran  (  _I  |`  A )  C_  On ) )
81, 6, 7mpbir2an 942 . 2  |-  (  _I  |`  A ) : A --> On
9 fvresi 5710 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
109adantr 276 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( (  _I  |`  A ) `
 x )  =  x )
11 fvresi 5710 . . . . 5  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
1211adantl 277 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( (  _I  |`  A ) `
 y )  =  y )
1310, 12eleq12d 2248 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( (  _I  |`  A ) `  x
)  e.  ( (  _I  |`  A ) `  y )  <->  x  e.  y ) )
1413biimprd 158 . 2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  y  ->  ( (  _I  |`  A ) `  x
)  e.  ( (  _I  |`  A ) `  y ) ) )
15 dmresi 4963 . 2  |-  dom  (  _I  |`  A )  =  A
168, 3, 14, 15issmo 6289 1  |-  Smo  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148    C_ wss 3130    _I cid 4289   Ord word 4363   Oncon0 4364   ran crn 4628    |` cres 4629    Fn wfn 5212   -->wf 5213   ` cfv 5217   Smo wsmo 6286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-smo 6287
This theorem is referenced by:  smo0  6299
  Copyright terms: Public domain W3C validator