![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lpowlpo | Unicode version |
Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7167. There is an analogue in terms of analytic omniscience principles at tridceq 14889. (Contributed by Jim Kingdon, 24-Jul-2024.) |
Ref | Expression |
---|---|
lpowlpo |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omniwomnimkv 7167 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-nul 4131 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-nul 3425 df-sn 3600 df-suc 4373 df-fn 5221 df-f 5222 df-1o 6419 df-omni 7135 df-markov 7152 df-womni 7164 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |