ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lpowlpo Unicode version

Theorem lpowlpo 7335
Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7334. There is an analogue in terms of analytic omniscience principles at tridceq 16424. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
lpowlpo  |-  ( om  e. Omni  ->  om  e. WOmni )

Proof of Theorem lpowlpo
StepHypRef Expression
1 omniwomnimkv 7334 . 2  |-  ( om  e. Omni 
<->  ( om  e. WOmni  /\  om  e. Markov ) )
21simplbi 274 1  |-  ( om  e. Omni  ->  om  e. WOmni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   omcom 4682  Omnicomni 7301  Markovcmarkov 7318  WOmnicwomni 7330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4210
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-suc 4462  df-fn 5321  df-f 5322  df-1o 6562  df-omni 7302  df-markov 7319  df-womni 7331
This theorem is referenced by:  nnnninfen  16387
  Copyright terms: Public domain W3C validator