| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lpowlpo | GIF version | ||
| Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7330. There is an analogue in terms of analytic omniscience principles at tridceq 16383. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| lpowlpo | ⊢ (ω ∈ Omni → ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omniwomnimkv 7330 | . 2 ⊢ (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (ω ∈ Omni → ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ωcom 4681 Omnicomni 7297 Markovcmarkov 7314 WOmnicwomni 7326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-suc 4461 df-fn 5320 df-f 5321 df-1o 6560 df-omni 7298 df-markov 7315 df-womni 7327 |
| This theorem is referenced by: nnnninfen 16346 |
| Copyright terms: Public domain | W3C validator |