![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lpowlpo | GIF version |
Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7183. There is an analogue in terms of analytic omniscience principles at tridceq 15202. (Contributed by Jim Kingdon, 24-Jul-2024.) |
Ref | Expression |
---|---|
lpowlpo | ⊢ (ω ∈ Omni → ω ∈ WOmni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omniwomnimkv 7183 | . 2 ⊢ (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov)) | |
2 | 1 | simplbi 274 | 1 ⊢ (ω ∈ Omni → ω ∈ WOmni) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 ωcom 4604 Omnicomni 7150 Markovcmarkov 7167 WOmnicwomni 7179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-nul 4144 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-v 2754 df-dif 3146 df-un 3148 df-nul 3438 df-sn 3613 df-suc 4386 df-fn 5234 df-f 5235 df-1o 6435 df-omni 7151 df-markov 7168 df-womni 7180 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |