| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lpowlpo | GIF version | ||
| Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7290. There is an analogue in terms of analytic omniscience principles at tridceq 16167. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| lpowlpo | ⊢ (ω ∈ Omni → ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omniwomnimkv 7290 | . 2 ⊢ (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (ω ∈ Omni → ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ωcom 4651 Omnicomni 7257 Markovcmarkov 7274 WOmnicwomni 7286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4181 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-nul 3465 df-sn 3644 df-suc 4431 df-fn 5288 df-f 5289 df-1o 6520 df-omni 7258 df-markov 7275 df-womni 7287 |
| This theorem is referenced by: nnnninfen 16130 |
| Copyright terms: Public domain | W3C validator |