![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lpowlpo | GIF version |
Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7226. There is an analogue in terms of analytic omniscience principles at tridceq 15546. (Contributed by Jim Kingdon, 24-Jul-2024.) |
Ref | Expression |
---|---|
lpowlpo | ⊢ (ω ∈ Omni → ω ∈ WOmni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omniwomnimkv 7226 | . 2 ⊢ (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov)) | |
2 | 1 | simplbi 274 | 1 ⊢ (ω ∈ Omni → ω ∈ WOmni) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ωcom 4622 Omnicomni 7193 Markovcmarkov 7210 WOmnicwomni 7222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4155 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 df-sn 3624 df-suc 4402 df-fn 5257 df-f 5258 df-1o 6469 df-omni 7194 df-markov 7211 df-womni 7223 |
This theorem is referenced by: nnnninfen 15511 |
Copyright terms: Public domain | W3C validator |