ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lpowlpo GIF version

Theorem lpowlpo 7126
Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7125. There is an analogue in terms of analytic omniscience principles at tridceq 13828. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
lpowlpo (ω ∈ Omni → ω ∈ WOmni)

Proof of Theorem lpowlpo
StepHypRef Expression
1 omniwomnimkv 7125 . 2 (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov))
21simplbi 272 1 (ω ∈ Omni → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2135  ωcom 4564  Omnicomni 7092  Markovcmarkov 7109  WOmnicwomni 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146  ax-nul 4105
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-v 2726  df-dif 3116  df-un 3118  df-nul 3408  df-sn 3579  df-suc 4346  df-fn 5188  df-f 5189  df-1o 6378  df-omni 7093  df-markov 7110  df-womni 7122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator