ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lpowlpo GIF version

Theorem lpowlpo 7184
Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7183. There is an analogue in terms of analytic omniscience principles at tridceq 15202. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
lpowlpo (ω ∈ Omni → ω ∈ WOmni)

Proof of Theorem lpowlpo
StepHypRef Expression
1 omniwomnimkv 7183 . 2 (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov))
21simplbi 274 1 (ω ∈ Omni → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160  ωcom 4604  Omnicomni 7150  Markovcmarkov 7167  WOmnicwomni 7179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-nul 4144
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-nul 3438  df-sn 3613  df-suc 4386  df-fn 5234  df-f 5235  df-1o 6435  df-omni 7151  df-markov 7168  df-womni 7180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator