ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lpowlpo GIF version

Theorem lpowlpo 7252
Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7251. There is an analogue in terms of analytic omniscience principles at tridceq 15859. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
lpowlpo (ω ∈ Omni → ω ∈ WOmni)

Proof of Theorem lpowlpo
StepHypRef Expression
1 omniwomnimkv 7251 . 2 (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov))
21simplbi 274 1 (ω ∈ Omni → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  ωcom 4636  Omnicomni 7218  Markovcmarkov 7235  WOmnicwomni 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-nul 4169
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-nul 3460  df-sn 3638  df-suc 4416  df-fn 5271  df-f 5272  df-1o 6492  df-omni 7219  df-markov 7236  df-womni 7248
This theorem is referenced by:  nnnninfen  15822
  Copyright terms: Public domain W3C validator