| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lpowlpo | GIF version | ||
| Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7233. There is an analogue in terms of analytic omniscience principles at tridceq 15700. (Contributed by Jim Kingdon, 24-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| lpowlpo | ⊢ (ω ∈ Omni → ω ∈ WOmni) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omniwomnimkv 7233 | . 2 ⊢ (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (ω ∈ Omni → ω ∈ WOmni) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ωcom 4626 Omnicomni 7200 Markovcmarkov 7217 WOmnicwomni 7229 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-suc 4406 df-fn 5261 df-f 5262 df-1o 6474 df-omni 7201 df-markov 7218 df-womni 7230 | 
| This theorem is referenced by: nnnninfen 15665 | 
| Copyright terms: Public domain | W3C validator |