Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lpowlpo | GIF version |
Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7131. There is an analogue in terms of analytic omniscience principles at tridceq 13935. (Contributed by Jim Kingdon, 24-Jul-2024.) |
Ref | Expression |
---|---|
lpowlpo | ⊢ (ω ∈ Omni → ω ∈ WOmni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omniwomnimkv 7131 | . 2 ⊢ (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov)) | |
2 | 1 | simplbi 272 | 1 ⊢ (ω ∈ Omni → ω ∈ WOmni) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ωcom 4567 Omnicomni 7098 Markovcmarkov 7115 WOmnicwomni 7127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-suc 4349 df-fn 5191 df-f 5192 df-1o 6384 df-omni 7099 df-markov 7116 df-womni 7128 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |