| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lpowlpo | GIF version | ||
| Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7251. There is an analogue in terms of analytic omniscience principles at tridceq 15859. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| lpowlpo | ⊢ (ω ∈ Omni → ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omniwomnimkv 7251 | . 2 ⊢ (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (ω ∈ Omni → ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ωcom 4636 Omnicomni 7218 Markovcmarkov 7235 WOmnicwomni 7247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-nul 4169 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-nul 3460 df-sn 3638 df-suc 4416 df-fn 5271 df-f 5272 df-1o 6492 df-omni 7219 df-markov 7236 df-womni 7248 |
| This theorem is referenced by: nnnninfen 15822 |
| Copyright terms: Public domain | W3C validator |