Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lpowlpo | GIF version |
Description: LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7125. There is an analogue in terms of analytic omniscience principles at tridceq 13828. (Contributed by Jim Kingdon, 24-Jul-2024.) |
Ref | Expression |
---|---|
lpowlpo | ⊢ (ω ∈ Omni → ω ∈ WOmni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omniwomnimkv 7125 | . 2 ⊢ (ω ∈ Omni ↔ (ω ∈ WOmni ∧ ω ∈ Markov)) | |
2 | 1 | simplbi 272 | 1 ⊢ (ω ∈ Omni → ω ∈ WOmni) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2135 ωcom 4564 Omnicomni 7092 Markovcmarkov 7109 WOmnicwomni 7121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 ax-nul 4105 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-v 2726 df-dif 3116 df-un 3118 df-nul 3408 df-sn 3579 df-suc 4346 df-fn 5188 df-f 5189 df-1o 6378 df-omni 7093 df-markov 7110 df-womni 7122 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |