ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enwomnilem Unicode version

Theorem enwomnilem 7091
Description: Lemma for enwomni 7092. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.)
Assertion
Ref Expression
enwomnilem  |-  ( A 
~~  B  ->  ( A  e. WOmni  ->  B  e. WOmni
) )

Proof of Theorem enwomnilem
Dummy variables  f  g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6681 . . . . . . 7  |-  ( A 
~~  B  <->  E. h  h : A -1-1-onto-> B )
21biimpi 119 . . . . . 6  |-  ( A 
~~  B  ->  E. h  h : A -1-1-onto-> B )
32ad2antrr 480 . . . . 5  |-  ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  ->  E. h  h : A
-1-1-onto-> B )
4 fveq1 5460 . . . . . . . . . 10  |-  ( f  =  ( g  o.  h )  ->  (
f `  x )  =  ( ( g  o.  h ) `  x ) )
54eqeq1d 2163 . . . . . . . . 9  |-  ( f  =  ( g  o.  h )  ->  (
( f `  x
)  =  1o  <->  ( (
g  o.  h ) `
 x )  =  1o ) )
65ralbidv 2454 . . . . . . . 8  |-  ( f  =  ( g  o.  h )  ->  ( A. x  e.  A  ( f `  x
)  =  1o  <->  A. x  e.  A  ( (
g  o.  h ) `
 x )  =  1o ) )
76dcbid 824 . . . . . . 7  |-  ( f  =  ( g  o.  h )  ->  (DECID  A. x  e.  A  (
f `  x )  =  1o  <-> DECID  A. x  e.  A  ( ( g  o.  h
) `  x )  =  1o ) )
8 iswomnimap 7088 . . . . . . . . 9  |-  ( A  e. WOmni  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o 
^m  A )DECID  A. x  e.  A  ( f `  x )  =  1o ) )
98ibi 175 . . . . . . . 8  |-  ( A  e. WOmni  ->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1o )
109ad3antlr 485 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  A. f  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1o )
11 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
g  e.  ( 2o 
^m  B ) )
12 2onn 6457 . . . . . . . . . . . . 13  |-  2o  e.  om
13 relen 6678 . . . . . . . . . . . . . 14  |-  Rel  ~~
1413brrelex2i 4623 . . . . . . . . . . . . 13  |-  ( A 
~~  B  ->  B  e.  _V )
15 elmapg 6595 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  om  /\  B  e.  _V )  ->  ( g  e.  ( 2o  ^m  B )  <-> 
g : B --> 2o ) )
1612, 14, 15sylancr 411 . . . . . . . . . . . 12  |-  ( A 
~~  B  ->  (
g  e.  ( 2o 
^m  B )  <->  g : B
--> 2o ) )
1716ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
( g  e.  ( 2o  ^m  B )  <-> 
g : B --> 2o ) )
1811, 17mpbid 146 . . . . . . . . . 10  |-  ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  -> 
g : B --> 2o )
1918adantr 274 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  g : B
--> 2o )
20 f1of 5407 . . . . . . . . . 10  |-  ( h : A -1-1-onto-> B  ->  h : A
--> B )
2120adantl 275 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  h : A
--> B )
22 fco 5328 . . . . . . . . 9  |-  ( ( g : B --> 2o  /\  h : A --> B )  ->  ( g  o.  h ) : A --> 2o )
2319, 21, 22syl2anc 409 . . . . . . . 8  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( g  o.  h ) : A --> 2o )
24 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  A  e. WOmni )
25 elmapg 6595 . . . . . . . . 9  |-  ( ( 2o  e.  om  /\  A  e. WOmni )  ->  ( ( g  o.  h
)  e.  ( 2o 
^m  A )  <->  ( g  o.  h ) : A --> 2o ) )
2612, 24, 25sylancr 411 . . . . . . . 8  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( (
g  o.  h )  e.  ( 2o  ^m  A )  <->  ( g  o.  h ) : A --> 2o ) )
2723, 26mpbird 166 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( g  o.  h )  e.  ( 2o  ^m  A ) )
287, 10, 27rspcdva 2818 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  -> DECID  A. x  e.  A  ( ( g  o.  h ) `  x
)  =  1o )
29 f1ofn 5408 . . . . . . . . . . . 12  |-  ( h : A -1-1-onto-> B  ->  h  Fn  A )
3029ad3antlr 485 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  h  Fn  A )
31 f1ocnv 5420 . . . . . . . . . . . . . 14  |-  ( h : A -1-1-onto-> B  ->  `' h : B -1-1-onto-> A )
32 f1of 5407 . . . . . . . . . . . . . 14  |-  ( `' h : B -1-1-onto-> A  ->  `' h : B --> A )
3331, 32syl 14 . . . . . . . . . . . . 13  |-  ( h : A -1-1-onto-> B  ->  `' h : B --> A )
3433ad3antlr 485 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  `' h : B --> A )
35 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  y  e.  B )
3634, 35ffvelrnd 5596 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  ( `' h `  y )  e.  A )
37 fvco2 5530 . . . . . . . . . . 11  |-  ( ( h  Fn  A  /\  ( `' h `  y )  e.  A )  -> 
( ( g  o.  h ) `  ( `' h `  y ) )  =  ( g `
 ( h `  ( `' h `  y ) ) ) )
3830, 36, 37syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
( g  o.  h
) `  ( `' h `  y )
)  =  ( g `
 ( h `  ( `' h `  y ) ) ) )
39 fveqeq2 5470 . . . . . . . . . . 11  |-  ( x  =  ( `' h `  y )  ->  (
( ( g  o.  h ) `  x
)  =  1o  <->  ( (
g  o.  h ) `
 ( `' h `  y ) )  =  1o ) )
40 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  A. x  e.  A  ( (
g  o.  h ) `
 x )  =  1o )
4139, 40, 36rspcdva 2818 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
( g  o.  h
) `  ( `' h `  y )
)  =  1o )
42 f1ocnvfv2 5719 . . . . . . . . . . . 12  |-  ( ( h : A -1-1-onto-> B  /\  y  e.  B )  ->  ( h `  ( `' h `  y ) )  =  y )
4342fveq2d 5465 . . . . . . . . . . 11  |-  ( ( h : A -1-1-onto-> B  /\  y  e.  B )  ->  ( g `  (
h `  ( `' h `  y )
) )  =  ( g `  y ) )
4443ad4ant24 508 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
g `  ( h `  ( `' h `  y ) ) )  =  ( g `  y ) )
4538, 41, 443eqtr3rd 2196 . . . . . . . . 9  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  /\  y  e.  B )  ->  (
g `  y )  =  1o )
4645ralrimiva 2527 . . . . . . . 8  |-  ( ( ( ( ( A 
~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. x  e.  A  (
( g  o.  h
) `  x )  =  1o )  ->  A. y  e.  B  ( g `  y )  =  1o )
4729ad3antlr 485 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. y  e.  B  (
g `  y )  =  1o )  /\  x  e.  A )  ->  h  Fn  A )
48 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. y  e.  B  (
g `  y )  =  1o )  /\  x  e.  A )  ->  x  e.  A )
49 fvco2 5530 . . . . . . . . . . 11  |-  ( ( h  Fn  A  /\  x  e.  A )  ->  ( ( g  o.  h ) `  x
)  =  ( g `
 ( h `  x ) ) )
5047, 48, 49syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. y  e.  B  (
g `  y )  =  1o )  /\  x  e.  A )  ->  (
( g  o.  h
) `  x )  =  ( g `  ( h `  x
) ) )
51 fveqeq2 5470 . . . . . . . . . . 11  |-  ( y  =  ( h `  x )  ->  (
( g `  y
)  =  1o  <->  ( g `  ( h `  x
) )  =  1o ) )
52 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. y  e.  B  (
g `  y )  =  1o )  /\  x  e.  A )  ->  A. y  e.  B  ( g `  y )  =  1o )
5321ffvelrnda 5595 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  x  e.  A )  ->  (
h `  x )  e.  B )
5453adantlr 469 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. y  e.  B  (
g `  y )  =  1o )  /\  x  e.  A )  ->  (
h `  x )  e.  B )
5551, 52, 54rspcdva 2818 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. y  e.  B  (
g `  y )  =  1o )  /\  x  e.  A )  ->  (
g `  ( h `  x ) )  =  1o )
5650, 55eqtrd 2187 . . . . . . . . 9  |-  ( ( ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. y  e.  B  (
g `  y )  =  1o )  /\  x  e.  A )  ->  (
( g  o.  h
) `  x )  =  1o )
5756ralrimiva 2527 . . . . . . . 8  |-  ( ( ( ( ( A 
~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B
) )  /\  h : A -1-1-onto-> B )  /\  A. y  e.  B  (
g `  y )  =  1o )  ->  A. x  e.  A  ( (
g  o.  h ) `
 x )  =  1o )
5846, 57impbida 586 . . . . . . 7  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  ( A. x  e.  A  (
( g  o.  h
) `  x )  =  1o  <->  A. y  e.  B  ( g `  y
)  =  1o ) )
5958dcbid 824 . . . . . 6  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  ->  (DECID  A. x  e.  A  ( (
g  o.  h ) `
 x )  =  1o  <-> DECID  A. y  e.  B  ( g `  y )  =  1o ) )
6028, 59mpbid 146 . . . . 5  |-  ( ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  /\  h : A -1-1-onto-> B
)  -> DECID  A. y  e.  B  ( g `  y
)  =  1o )
613, 60exlimddv 1875 . . . 4  |-  ( ( ( A  ~~  B  /\  A  e. WOmni )  /\  g  e.  ( 2o  ^m  B ) )  -> DECID  A. y  e.  B  ( g `  y )  =  1o )
6261ralrimiva 2527 . . 3  |-  ( ( A  ~~  B  /\  A  e. WOmni )  ->  A. g  e.  ( 2o 
^m  B )DECID  A. y  e.  B  ( g `  y )  =  1o )
63 iswomnimap 7088 . . . . 5  |-  ( B  e.  _V  ->  ( B  e. WOmni  <->  A. g  e.  ( 2o  ^m  B )DECID  A. y  e.  B  (
g `  y )  =  1o ) )
6414, 63syl 14 . . . 4  |-  ( A 
~~  B  ->  ( B  e. WOmni  <->  A. g  e.  ( 2o  ^m  B )DECID  A. y  e.  B  (
g `  y )  =  1o ) )
6564adantr 274 . . 3  |-  ( ( A  ~~  B  /\  A  e. WOmni )  ->  ( B  e. WOmni  <->  A. g  e.  ( 2o  ^m  B )DECID  A. y  e.  B  (
g `  y )  =  1o ) )
6662, 65mpbird 166 . 2  |-  ( ( A  ~~  B  /\  A  e. WOmni )  ->  B  e. WOmni )
6766ex 114 1  |-  ( A 
~~  B  ->  ( A  e. WOmni  ->  B  e. WOmni
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    = wceq 1332   E.wex 1469    e. wcel 2125   A.wral 2432   _Vcvv 2709   class class class wbr 3961   omcom 4543   `'ccnv 4578    o. ccom 4583    Fn wfn 5158   -->wf 5159   -1-1-onto->wf1o 5162   ` cfv 5163  (class class class)co 5814   1oc1o 6346   2oc2o 6347    ^m cmap 6582    ~~ cen 6672  WOmnicwomni 7085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-id 4248  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1o 6353  df-2o 6354  df-map 6584  df-en 6675  df-womni 7086
This theorem is referenced by:  enwomni  7092
  Copyright terms: Public domain W3C validator