ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpi Unicode version

Theorem ltrelpi 7472
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
ltrelpi  |-  <N  C_  ( N.  X.  N. )

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 7455 . 2  |-  <N  =  (  _E  i^i  ( N.  X.  N. ) )
2 inss2 3402 . 2  |-  (  _E 
i^i  ( N.  X.  N. ) )  C_  ( N.  X.  N. )
31, 2eqsstri 3233 1  |-  <N  C_  ( N.  X.  N. )
Colors of variables: wff set class
Syntax hints:    i^i cin 3173    C_ wss 3174    _E cep 4352    X. cxp 4691   N.cnpi 7420    <N clti 7423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-lti 7455
This theorem is referenced by:  ltsonq  7546  caucvgprlemk  7813  caucvgprlem1  7827  caucvgprlem2  7828  caucvgprprlemk  7831  caucvgprprlemval  7836  caucvgprprlem1  7857  caucvgprprlem2  7858  ltrenn  8003
  Copyright terms: Public domain W3C validator