ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpi Unicode version

Theorem ltrelpi 7507
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
ltrelpi  |-  <N  C_  ( N.  X.  N. )

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 7490 . 2  |-  <N  =  (  _E  i^i  ( N.  X.  N. ) )
2 inss2 3425 . 2  |-  (  _E 
i^i  ( N.  X.  N. ) )  C_  ( N.  X.  N. )
31, 2eqsstri 3256 1  |-  <N  C_  ( N.  X.  N. )
Colors of variables: wff set class
Syntax hints:    i^i cin 3196    C_ wss 3197    _E cep 4377    X. cxp 4716   N.cnpi 7455    <N clti 7458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-lti 7490
This theorem is referenced by:  ltsonq  7581  caucvgprlemk  7848  caucvgprlem1  7862  caucvgprlem2  7863  caucvgprprlemk  7866  caucvgprprlemval  7871  caucvgprprlem1  7892  caucvgprprlem2  7893  ltrenn  8038
  Copyright terms: Public domain W3C validator