ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpi Unicode version

Theorem ltrelpi 7437
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
ltrelpi  |-  <N  C_  ( N.  X.  N. )

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 7420 . 2  |-  <N  =  (  _E  i^i  ( N.  X.  N. ) )
2 inss2 3394 . 2  |-  (  _E 
i^i  ( N.  X.  N. ) )  C_  ( N.  X.  N. )
31, 2eqsstri 3225 1  |-  <N  C_  ( N.  X.  N. )
Colors of variables: wff set class
Syntax hints:    i^i cin 3165    C_ wss 3166    _E cep 4334    X. cxp 4673   N.cnpi 7385    <N clti 7388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-lti 7420
This theorem is referenced by:  ltsonq  7511  caucvgprlemk  7778  caucvgprlem1  7792  caucvgprlem2  7793  caucvgprprlemk  7796  caucvgprprlemval  7801  caucvgprprlem1  7822  caucvgprprlem2  7823  ltrenn  7968
  Copyright terms: Public domain W3C validator