ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpi Unicode version

Theorem ltrelpi 7436
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
ltrelpi  |-  <N  C_  ( N.  X.  N. )

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 7419 . 2  |-  <N  =  (  _E  i^i  ( N.  X.  N. ) )
2 inss2 3393 . 2  |-  (  _E 
i^i  ( N.  X.  N. ) )  C_  ( N.  X.  N. )
31, 2eqsstri 3224 1  |-  <N  C_  ( N.  X.  N. )
Colors of variables: wff set class
Syntax hints:    i^i cin 3164    C_ wss 3165    _E cep 4333    X. cxp 4672   N.cnpi 7384    <N clti 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-lti 7419
This theorem is referenced by:  ltsonq  7510  caucvgprlemk  7777  caucvgprlem1  7791  caucvgprlem2  7792  caucvgprprlemk  7795  caucvgprprlemval  7800  caucvgprprlem1  7821  caucvgprprlem2  7822  ltrenn  7967
  Copyright terms: Public domain W3C validator