ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpi Unicode version

Theorem ltrelpi 7265
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
ltrelpi  |-  <N  C_  ( N.  X.  N. )

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 7248 . 2  |-  <N  =  (  _E  i^i  ( N.  X.  N. ) )
2 inss2 3343 . 2  |-  (  _E 
i^i  ( N.  X.  N. ) )  C_  ( N.  X.  N. )
31, 2eqsstri 3174 1  |-  <N  C_  ( N.  X.  N. )
Colors of variables: wff set class
Syntax hints:    i^i cin 3115    C_ wss 3116    _E cep 4265    X. cxp 4602   N.cnpi 7213    <N clti 7216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-lti 7248
This theorem is referenced by:  ltsonq  7339  caucvgprlemk  7606  caucvgprlem1  7620  caucvgprlem2  7621  caucvgprprlemk  7624  caucvgprprlemval  7629  caucvgprprlem1  7650  caucvgprprlem2  7651  ltrenn  7796
  Copyright terms: Public domain W3C validator