ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpi GIF version

Theorem ltrelpi 7444
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
ltrelpi <N ⊆ (N × N)

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 7427 . 2 <N = ( E ∩ (N × N))
2 inss2 3395 . 2 ( E ∩ (N × N)) ⊆ (N × N)
31, 2eqsstri 3226 1 <N ⊆ (N × N)
Colors of variables: wff set class
Syntax hints:  cin 3166  wss 3167   E cep 4338   × cxp 4677  Ncnpi 7392   <N clti 7395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3173  df-ss 3180  df-lti 7427
This theorem is referenced by:  ltsonq  7518  caucvgprlemk  7785  caucvgprlem1  7799  caucvgprlem2  7800  caucvgprprlemk  7803  caucvgprprlemval  7808  caucvgprprlem1  7829  caucvgprprlem2  7830  ltrenn  7975
  Copyright terms: Public domain W3C validator