Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltrelpi | GIF version |
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
ltrelpi | ⊢ <N ⊆ (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 7248 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
2 | inss2 3343 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
3 | 1, 2 | eqsstri 3174 | 1 ⊢ <N ⊆ (N × N) |
Colors of variables: wff set class |
Syntax hints: ∩ cin 3115 ⊆ wss 3116 E cep 4265 × cxp 4602 Ncnpi 7213 <N clti 7216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-lti 7248 |
This theorem is referenced by: ltsonq 7339 caucvgprlemk 7606 caucvgprlem1 7620 caucvgprlem2 7621 caucvgprprlemk 7624 caucvgprprlemval 7629 caucvgprprlem1 7650 caucvgprprlem2 7651 ltrenn 7796 |
Copyright terms: Public domain | W3C validator |