| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpi | GIF version | ||
| Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpi | ⊢ <N ⊆ (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lti 7427 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
| 2 | inss2 3395 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
| 3 | 1, 2 | eqsstri 3226 | 1 ⊢ <N ⊆ (N × N) |
| Colors of variables: wff set class |
| Syntax hints: ∩ cin 3166 ⊆ wss 3167 E cep 4338 × cxp 4677 Ncnpi 7392 <N clti 7395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3173 df-ss 3180 df-lti 7427 |
| This theorem is referenced by: ltsonq 7518 caucvgprlemk 7785 caucvgprlem1 7799 caucvgprlem2 7800 caucvgprprlemk 7803 caucvgprprlemval 7808 caucvgprprlem1 7829 caucvgprprlem2 7830 ltrenn 7975 |
| Copyright terms: Public domain | W3C validator |