ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpi GIF version

Theorem ltrelpi 7479
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
ltrelpi <N ⊆ (N × N)

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 7462 . 2 <N = ( E ∩ (N × N))
2 inss2 3405 . 2 ( E ∩ (N × N)) ⊆ (N × N)
31, 2eqsstri 3236 1 <N ⊆ (N × N)
Colors of variables: wff set class
Syntax hints:  cin 3176  wss 3177   E cep 4355   × cxp 4694  Ncnpi 7427   <N clti 7430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-ss 3190  df-lti 7462
This theorem is referenced by:  ltsonq  7553  caucvgprlemk  7820  caucvgprlem1  7834  caucvgprlem2  7835  caucvgprprlemk  7838  caucvgprprlemval  7843  caucvgprprlem1  7864  caucvgprprlem2  7865  ltrenn  8010
  Copyright terms: Public domain W3C validator