ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpi GIF version

Theorem ltrelpi 7391
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
ltrelpi <N ⊆ (N × N)

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 7374 . 2 <N = ( E ∩ (N × N))
2 inss2 3384 . 2 ( E ∩ (N × N)) ⊆ (N × N)
31, 2eqsstri 3215 1 <N ⊆ (N × N)
Colors of variables: wff set class
Syntax hints:  cin 3156  wss 3157   E cep 4322   × cxp 4661  Ncnpi 7339   <N clti 7342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-lti 7374
This theorem is referenced by:  ltsonq  7465  caucvgprlemk  7732  caucvgprlem1  7746  caucvgprlem2  7747  caucvgprprlemk  7750  caucvgprprlemval  7755  caucvgprprlem1  7776  caucvgprprlem2  7777  ltrenn  7922
  Copyright terms: Public domain W3C validator