ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpi GIF version

Theorem ltrelpi 7265
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
ltrelpi <N ⊆ (N × N)

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 7248 . 2 <N = ( E ∩ (N × N))
2 inss2 3343 . 2 ( E ∩ (N × N)) ⊆ (N × N)
31, 2eqsstri 3174 1 <N ⊆ (N × N)
Colors of variables: wff set class
Syntax hints:  cin 3115  wss 3116   E cep 4265   × cxp 4602  Ncnpi 7213   <N clti 7216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-lti 7248
This theorem is referenced by:  ltsonq  7339  caucvgprlemk  7606  caucvgprlem1  7620  caucvgprlem2  7621  caucvgprprlemk  7624  caucvgprprlemval  7629  caucvgprprlem1  7650  caucvgprprlem2  7651  ltrenn  7796
  Copyright terms: Public domain W3C validator