![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelpi | GIF version |
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
ltrelpi | ⊢ <N ⊆ (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 7369 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
2 | inss2 3381 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
3 | 1, 2 | eqsstri 3212 | 1 ⊢ <N ⊆ (N × N) |
Colors of variables: wff set class |
Syntax hints: ∩ cin 3153 ⊆ wss 3154 E cep 4319 × cxp 4658 Ncnpi 7334 <N clti 7337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-lti 7369 |
This theorem is referenced by: ltsonq 7460 caucvgprlemk 7727 caucvgprlem1 7741 caucvgprlem2 7742 caucvgprprlemk 7745 caucvgprprlemval 7750 caucvgprprlem1 7771 caucvgprprlem2 7772 ltrenn 7917 |
Copyright terms: Public domain | W3C validator |