| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpi | GIF version | ||
| Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpi | ⊢ <N ⊆ (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lti 7462 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
| 2 | inss2 3405 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
| 3 | 1, 2 | eqsstri 3236 | 1 ⊢ <N ⊆ (N × N) |
| Colors of variables: wff set class |
| Syntax hints: ∩ cin 3176 ⊆ wss 3177 E cep 4355 × cxp 4694 Ncnpi 7427 <N clti 7430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-ss 3190 df-lti 7462 |
| This theorem is referenced by: ltsonq 7553 caucvgprlemk 7820 caucvgprlem1 7834 caucvgprlem2 7835 caucvgprprlemk 7838 caucvgprprlemval 7843 caucvgprprlem1 7864 caucvgprprlem2 7865 ltrenn 8010 |
| Copyright terms: Public domain | W3C validator |