| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpi | GIF version | ||
| Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpi | ⊢ <N ⊆ (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lti 7502 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
| 2 | inss2 3425 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
| 3 | 1, 2 | eqsstri 3256 | 1 ⊢ <N ⊆ (N × N) |
| Colors of variables: wff set class |
| Syntax hints: ∩ cin 3196 ⊆ wss 3197 E cep 4378 × cxp 4717 Ncnpi 7467 <N clti 7470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-lti 7502 |
| This theorem is referenced by: ltsonq 7593 caucvgprlemk 7860 caucvgprlem1 7874 caucvgprlem2 7875 caucvgprprlemk 7878 caucvgprprlemval 7883 caucvgprprlem1 7904 caucvgprprlem2 7905 ltrenn 8050 |
| Copyright terms: Public domain | W3C validator |