ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemk Unicode version

Theorem caucvgprprlemk 7624
Description: Lemma for caucvgprpr 7653. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.)
Hypotheses
Ref Expression
caucvgprprlemk.jk  |-  ( ph  ->  J  <N  K )
caucvgprprlemk.jkq  |-  ( ph  -> 
<. { l  |  l 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
Assertion
Ref Expression
caucvgprprlemk  |-  ( ph  -> 
<. { l  |  l 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
Distinct variable groups:    J, l    u, J    K, l    u, K
Allowed substitution hints:    ph( u, l)    Q( u, l)

Proof of Theorem caucvgprprlemk
StepHypRef Expression
1 caucvgprprlemk.jk . . . 4  |-  ( ph  ->  J  <N  K )
2 ltrelpi 7265 . . . . . 6  |-  <N  C_  ( N.  X.  N. )
32brel 4656 . . . . 5  |-  ( J 
<N  K  ->  ( J  e.  N.  /\  K  e.  N. ) )
4 ltnnnq 7364 . . . . 5  |-  ( ( J  e.  N.  /\  K  e.  N. )  ->  ( J  <N  K  <->  [ <. J ,  1o >. ]  ~Q  <Q  [
<. K ,  1o >. ]  ~Q  ) )
51, 3, 43syl 17 . . . 4  |-  ( ph  ->  ( J  <N  K  <->  [ <. J ,  1o >. ]  ~Q  <Q  [
<. K ,  1o >. ]  ~Q  ) )
61, 5mpbid 146 . . 3  |-  ( ph  ->  [ <. J ,  1o >. ]  ~Q  <Q  [ <. K ,  1o >. ]  ~Q  )
7 ltrnqi 7362 . . 3  |-  ( [
<. J ,  1o >. ]  ~Q  <Q  [ <. K ,  1o >. ]  ~Q  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )
8 ltnqpri 7535 . . 3  |-  ( ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  ->  <. { l  |  l 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )
96, 7, 83syl 17 . 2  |-  ( ph  -> 
<. { l  |  l 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. )
10 caucvgprprlemk.jkq . 2  |-  ( ph  -> 
<. { l  |  l 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
11 ltsopr 7537 . . 3  |-  <P  Or  P.
12 ltrelpr 7446 . . 3  |-  <P  C_  ( P.  X.  P. )
1311, 12sotri 4999 . 2  |-  ( (
<. { l  |  l 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  /\  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )  ->  <. { l  |  l  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
149, 10, 13syl2anc 409 1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   {cab 2151   <.cop 3579   class class class wbr 3982   ` cfv 5188   1oc1o 6377   [cec 6499   N.cnpi 7213    <N clti 7216    ~Q ceq 7220   *Qcrq 7225    <Q cltq 7226   P.cnp 7232    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407  df-iltp 7411
This theorem is referenced by:  caucvgprprlem1  7650  caucvgprprlem2  7651
  Copyright terms: Public domain W3C validator