ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsonq Unicode version

Theorem ltsonq 7154
Description: 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.)
Assertion
Ref Expression
ltsonq  |-  <Q  Or  Q.

Proof of Theorem ltsonq
Dummy variables  a  b  c  d  e  f  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7104 . . . . . 6  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 id 19 . . . . . . . 8  |-  ( [
<. z ,  w >. ]  ~Q  =  x  ->  [ <. z ,  w >. ]  ~Q  =  x )
32, 2breq12d 3908 . . . . . . 7  |-  ( [
<. z ,  w >. ]  ~Q  =  x  -> 
( [ <. z ,  w >. ]  ~Q  <Q  [
<. z ,  w >. ]  ~Q  <->  x  <Q  x ) )
43notbid 639 . . . . . 6  |-  ( [
<. z ,  w >. ]  ~Q  =  x  -> 
( -.  [ <. z ,  w >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  -.  x  <Q  x ) )
5 ltsopi 7076 . . . . . . . 8  |-  <N  Or  N.
6 ltrelpi 7080 . . . . . . . 8  |-  <N  C_  ( N.  X.  N. )
75, 6soirri 4891 . . . . . . 7  |-  -.  (
w  .N  z ) 
<N  ( w  .N  z
)
8 ordpipqqs 7130 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( z  .N  w )  <N  (
w  .N  z ) ) )
98anidms 392 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [
<. z ,  w >. ]  ~Q  <->  ( z  .N  w )  <N  (
w  .N  z ) ) )
10 mulcompig 7087 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  .N  w
)  =  ( w  .N  z ) )
1110breq1d 3905 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  .N  w )  <N  (
w  .N  z )  <-> 
( w  .N  z
)  <N  ( w  .N  z ) ) )
129, 11bitrd 187 . . . . . . 7  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [
<. z ,  w >. ]  ~Q  <->  ( w  .N  z )  <N  (
w  .N  z ) ) )
137, 12mtbiri 647 . . . . . 6  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  -.  [ <. z ,  w >. ]  ~Q  <Q  [
<. z ,  w >. ]  ~Q  )
141, 4, 13ecoptocl 6470 . . . . 5  |-  ( x  e.  Q.  ->  -.  x  <Q  x )
1514adantl 273 . . . 4  |-  ( ( T.  /\  x  e. 
Q. )  ->  -.  x  <Q  x )
16 breq1 3898 . . . . . . . 8  |-  ( [
<. a ,  b >. ]  ~Q  =  x  -> 
( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d
>. ]  ~Q  <->  x  <Q  [
<. c ,  d >. ]  ~Q  ) )
1716anbi1d 458 . . . . . . 7  |-  ( [
<. a ,  b >. ]  ~Q  =  x  -> 
( ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d
>. ]  ~Q  /\  [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) 
<->  ( x  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) ) )
18 breq1 3898 . . . . . . 7  |-  ( [
<. a ,  b >. ]  ~Q  =  x  -> 
( [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  <->  x  <Q  [
<. e ,  f >. ]  ~Q  ) )
1917, 18imbi12d 233 . . . . . 6  |-  ( [
<. a ,  b >. ]  ~Q  =  x  -> 
( ( ( [
<. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  )  ->  [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  )  <->  ( (
x  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  )  ->  x  <Q  [ <. e ,  f >. ]  ~Q  ) ) )
20 breq2 3899 . . . . . . . 8  |-  ( [
<. c ,  d >. ]  ~Q  =  y  -> 
( x  <Q  [ <. c ,  d >. ]  ~Q  <->  x 
<Q  y ) )
21 breq1 3898 . . . . . . . 8  |-  ( [
<. c ,  d >. ]  ~Q  =  y  -> 
( [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  <->  y  <Q  [
<. e ,  f >. ]  ~Q  ) )
2220, 21anbi12d 462 . . . . . . 7  |-  ( [
<. c ,  d >. ]  ~Q  =  y  -> 
( ( x  <Q  [
<. c ,  d >. ]  ~Q  /\  [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  )  <->  ( x  <Q  y  /\  y  <Q  [ <. e ,  f
>. ]  ~Q  ) ) )
2322imbi1d 230 . . . . . 6  |-  ( [
<. c ,  d >. ]  ~Q  =  y  -> 
( ( ( x 
<Q  [ <. c ,  d
>. ]  ~Q  /\  [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  )  ->  x  <Q  [ <. e ,  f >. ]  ~Q  ) 
<->  ( ( x  <Q  y  /\  y  <Q  [ <. e ,  f >. ]  ~Q  )  ->  x  <Q  [ <. e ,  f >. ]  ~Q  ) ) )
24 breq2 3899 . . . . . . . 8  |-  ( [
<. e ,  f >. ]  ~Q  =  z  -> 
( y  <Q  [ <. e ,  f >. ]  ~Q  <->  y 
<Q  z ) )
2524anbi2d 457 . . . . . . 7  |-  ( [
<. e ,  f >. ]  ~Q  =  z  -> 
( ( x  <Q  y  /\  y  <Q  [ <. e ,  f >. ]  ~Q  ) 
<->  ( x  <Q  y  /\  y  <Q  z ) ) )
26 breq2 3899 . . . . . . 7  |-  ( [
<. e ,  f >. ]  ~Q  =  z  -> 
( x  <Q  [ <. e ,  f >. ]  ~Q  <->  x 
<Q  z ) )
2725, 26imbi12d 233 . . . . . 6  |-  ( [
<. e ,  f >. ]  ~Q  =  z  -> 
( ( ( x 
<Q  y  /\  y  <Q  [ <. e ,  f
>. ]  ~Q  )  ->  x  <Q  [ <. e ,  f >. ]  ~Q  ) 
<->  ( ( x  <Q  y  /\  y  <Q  z
)  ->  x  <Q  z ) ) )
28 ordpipqqs 7130 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )
)  ->  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  <->  ( a  .N  d ) 
<N  ( b  .N  c
) ) )
29283adant3 984 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  <->  ( a  .N  d ) 
<N  ( b  .N  c
) ) )
30 simp1l 988 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  a  e.  N. )
31 simp2r 991 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  d  e.  N. )
32 mulclpi 7084 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  N.  /\  d  e.  N. )  ->  ( a  .N  d
)  e.  N. )
3330, 31, 32syl2anc 406 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( a  .N  d )  e.  N. )
34 simp1r 989 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  b  e.  N. )
35 simp2l 990 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  c  e.  N. )
36 mulclpi 7084 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  N.  /\  c  e.  N. )  ->  ( b  .N  c
)  e.  N. )
3734, 35, 36syl2anc 406 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( b  .N  c )  e.  N. )
38 simp3r 993 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  f  e.  N. )
39 mulclpi 7084 . . . . . . . . . . . . . . . . 17  |-  ( ( c  e.  N.  /\  f  e.  N. )  ->  ( c  .N  f
)  e.  N. )
4035, 38, 39syl2anc 406 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( c  .N  f )  e.  N. )
41 ltmpig 7095 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  .N  d
)  e.  N.  /\  ( b  .N  c
)  e.  N.  /\  ( c  .N  f
)  e.  N. )  ->  ( ( a  .N  d )  <N  (
b  .N  c )  <-> 
( ( c  .N  f )  .N  (
a  .N  d ) )  <N  ( (
c  .N  f )  .N  ( b  .N  c ) ) ) )
4233, 37, 40, 41syl3anc 1199 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
a  .N  d ) 
<N  ( b  .N  c
)  <->  ( ( c  .N  f )  .N  ( a  .N  d
) )  <N  (
( c  .N  f
)  .N  ( b  .N  c ) ) ) )
4329, 42bitrd 187 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  <->  ( ( c  .N  f
)  .N  ( a  .N  d ) ) 
<N  ( ( c  .N  f )  .N  (
b  .N  c ) ) ) )
4443biimpa 292 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d
>. ]  ~Q  )  -> 
( ( c  .N  f )  .N  (
a  .N  d ) )  <N  ( (
c  .N  f )  .N  ( b  .N  c ) ) )
4544adantrr 468 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( c  .N  f
)  .N  ( a  .N  d ) ) 
<N  ( ( c  .N  f )  .N  (
b  .N  c ) ) )
46 mulcompig 7087 . . . . . . . . . . . . . 14  |-  ( ( ( c  .N  f
)  e.  N.  /\  ( b  .N  c
)  e.  N. )  ->  ( ( c  .N  f )  .N  (
b  .N  c ) )  =  ( ( b  .N  c )  .N  ( c  .N  f ) ) )
4740, 37, 46syl2anc 406 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  f )  .N  ( b  .N  c ) )  =  ( ( b  .N  c )  .N  (
c  .N  f ) ) )
4847adantr 272 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( c  .N  f
)  .N  ( b  .N  c ) )  =  ( ( b  .N  c )  .N  ( c  .N  f
) ) )
4945, 48breqtrd 3919 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( c  .N  f
)  .N  ( a  .N  d ) ) 
<N  ( ( b  .N  c )  .N  (
c  .N  f ) ) )
50 ordpipqqs 7130 . . . . . . . . . . . . . . 15  |-  ( ( ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( c  .N  f ) 
<N  ( d  .N  e
) ) )
51503adant1 982 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( c  .N  f ) 
<N  ( d  .N  e
) ) )
52 simp3l 992 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  e  e.  N. )
53 mulclpi 7084 . . . . . . . . . . . . . . . 16  |-  ( ( d  e.  N.  /\  e  e.  N. )  ->  ( d  .N  e
)  e.  N. )
5431, 52, 53syl2anc 406 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( d  .N  e )  e.  N. )
55 ltmpig 7095 . . . . . . . . . . . . . . 15  |-  ( ( ( c  .N  f
)  e.  N.  /\  ( d  .N  e
)  e.  N.  /\  ( b  .N  c
)  e.  N. )  ->  ( ( c  .N  f )  <N  (
d  .N  e )  <-> 
( ( b  .N  c )  .N  (
c  .N  f ) )  <N  ( (
b  .N  c )  .N  ( d  .N  e ) ) ) )
5640, 54, 37, 55syl3anc 1199 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  f ) 
<N  ( d  .N  e
)  <->  ( ( b  .N  c )  .N  ( c  .N  f
) )  <N  (
( b  .N  c
)  .N  ( d  .N  e ) ) ) )
5751, 56bitrd 187 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( ( b  .N  c
)  .N  ( c  .N  f ) ) 
<N  ( ( b  .N  c )  .N  (
d  .N  e ) ) ) )
5857biimpa 292 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  )  -> 
( ( b  .N  c )  .N  (
c  .N  f ) )  <N  ( (
b  .N  c )  .N  ( d  .N  e ) ) )
5958adantrl 467 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( b  .N  c
)  .N  ( c  .N  f ) ) 
<N  ( ( b  .N  c )  .N  (
d  .N  e ) ) )
605, 6sotri 4892 . . . . . . . . . . 11  |-  ( ( ( ( c  .N  f )  .N  (
a  .N  d ) )  <N  ( (
b  .N  c )  .N  ( c  .N  f ) )  /\  ( ( b  .N  c )  .N  (
c  .N  f ) )  <N  ( (
b  .N  c )  .N  ( d  .N  e ) ) )  ->  ( ( c  .N  f )  .N  ( a  .N  d
) )  <N  (
( b  .N  c
)  .N  ( d  .N  e ) ) )
6149, 59, 60syl2anc 406 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( c  .N  f
)  .N  ( a  .N  d ) ) 
<N  ( ( b  .N  c )  .N  (
d  .N  e ) ) )
62 mulcompig 7087 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
6362adantl 273 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( x  e.  N.  /\  y  e. 
N. ) )  -> 
( x  .N  y
)  =  ( y  .N  x ) )
64 mulasspig 7088 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
6564adantl 273 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( x  e.  N.  /\  y  e. 
N.  /\  z  e.  N. ) )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
66 mulclpi 7084 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  e.  N. )
6766adantl 273 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( x  e.  N.  /\  y  e. 
N. ) )  -> 
( x  .N  y
)  e.  N. )
6835, 31, 30, 63, 65, 38, 67caov411d 5910 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  d )  .N  ( a  .N  f ) )  =  ( ( a  .N  d )  .N  (
c  .N  f ) ) )
6963, 33, 40caovcomd 5881 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
a  .N  d )  .N  ( c  .N  f ) )  =  ( ( c  .N  f )  .N  (
a  .N  d ) ) )
7068, 69eqtrd 2147 . . . . . . . . . . . 12  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  d )  .N  ( a  .N  f ) )  =  ( ( c  .N  f )  .N  (
a  .N  d ) ) )
7135, 31, 34, 63, 65, 52, 67caov4d 5909 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  d )  .N  ( b  .N  e ) )  =  ( ( c  .N  b )  .N  (
d  .N  e ) ) )
7263, 35, 34caovcomd 5881 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( c  .N  b )  =  ( b  .N  c ) )
7372oveq1d 5743 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  b )  .N  ( d  .N  e ) )  =  ( ( b  .N  c )  .N  (
d  .N  e ) ) )
7471, 73eqtrd 2147 . . . . . . . . . . . 12  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  d )  .N  ( b  .N  e ) )  =  ( ( b  .N  c )  .N  (
d  .N  e ) ) )
7570, 74breq12d 3908 . . . . . . . . . . 11  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
( c  .N  d
)  .N  ( a  .N  f ) ) 
<N  ( ( c  .N  d )  .N  (
b  .N  e ) )  <->  ( ( c  .N  f )  .N  ( a  .N  d
) )  <N  (
( b  .N  c
)  .N  ( d  .N  e ) ) ) )
7675adantr 272 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( ( c  .N  d )  .N  (
a  .N  f ) )  <N  ( (
c  .N  d )  .N  ( b  .N  e ) )  <->  ( (
c  .N  f )  .N  ( a  .N  d ) )  <N 
( ( b  .N  c )  .N  (
d  .N  e ) ) ) )
7761, 76mpbird 166 . . . . . . . . 9  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( c  .N  d
)  .N  ( a  .N  f ) ) 
<N  ( ( c  .N  d )  .N  (
b  .N  e ) ) )
78 mulclpi 7084 . . . . . . . . . . . 12  |-  ( ( a  e.  N.  /\  f  e.  N. )  ->  ( a  .N  f
)  e.  N. )
7930, 38, 78syl2anc 406 . . . . . . . . . . 11  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( a  .N  f )  e.  N. )
80 mulclpi 7084 . . . . . . . . . . . 12  |-  ( ( b  e.  N.  /\  e  e.  N. )  ->  ( b  .N  e
)  e.  N. )
8134, 52, 80syl2anc 406 . . . . . . . . . . 11  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( b  .N  e )  e.  N. )
82 mulclpi 7084 . . . . . . . . . . . 12  |-  ( ( c  e.  N.  /\  d  e.  N. )  ->  ( c  .N  d
)  e.  N. )
8335, 31, 82syl2anc 406 . . . . . . . . . . 11  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( c  .N  d )  e.  N. )
84 ltmpig 7095 . . . . . . . . . . 11  |-  ( ( ( a  .N  f
)  e.  N.  /\  ( b  .N  e
)  e.  N.  /\  ( c  .N  d
)  e.  N. )  ->  ( ( a  .N  f )  <N  (
b  .N  e )  <-> 
( ( c  .N  d )  .N  (
a  .N  f ) )  <N  ( (
c  .N  d )  .N  ( b  .N  e ) ) ) )
8579, 81, 83, 84syl3anc 1199 . . . . . . . . . 10  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
a  .N  f ) 
<N  ( b  .N  e
)  <->  ( ( c  .N  d )  .N  ( a  .N  f
) )  <N  (
( c  .N  d
)  .N  ( b  .N  e ) ) ) )
8685adantr 272 . . . . . . . . 9  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( a  .N  f
)  <N  ( b  .N  e )  <->  ( (
c  .N  d )  .N  ( a  .N  f ) )  <N 
( ( c  .N  d )  .N  (
b  .N  e ) ) ) )
8777, 86mpbird 166 . . . . . . . 8  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
a  .N  f ) 
<N  ( b  .N  e
) )
88 ordpipqqs 7130 . . . . . . . . . 10  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( a  .N  f ) 
<N  ( b  .N  e
) ) )
89883adant2 983 . . . . . . . . 9  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( a  .N  f ) 
<N  ( b  .N  e
) ) )
9089adantr 272 . . . . . . . 8  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  ( [ <. a ,  b
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( a  .N  f ) 
<N  ( b  .N  e
) ) )
9187, 90mpbird 166 . . . . . . 7  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  )
9291ex 114 . . . . . 6  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( ( [ <. a ,  b
>. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  )  ->  [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  ) )
931, 19, 23, 27, 923ecoptocl 6472 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( x  <Q  y  /\  y  <Q  z )  ->  x  <Q  z
) )
9493adantl 273 . . . 4  |-  ( ( T.  /\  ( x  e.  Q.  /\  y  e.  Q.  /\  z  e. 
Q. ) )  -> 
( ( x  <Q  y  /\  y  <Q  z
)  ->  x  <Q  z ) )
9515, 94ispod 4186 . . 3  |-  ( T. 
->  <Q  Po  Q. )
96 nqtri3or 7152 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  \/  x  =  y  \/  y  <Q  x ) )
9796adantl 273 . . 3  |-  ( ( T.  /\  ( x  e.  Q.  /\  y  e.  Q. ) )  -> 
( x  <Q  y  \/  x  =  y  \/  y  <Q  x ) )
9895, 97issod 4201 . 2  |-  ( T. 
->  <Q  Or  Q. )
9998mptru 1323 1  |-  <Q  Or  Q.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 944    /\ w3a 945    = wceq 1314   T. wtru 1315    e. wcel 1463   <.cop 3496   class class class wbr 3895    Or wor 4177  (class class class)co 5728   [cec 6381   N.cnpi 7028    .N cmi 7030    <N clti 7031    ~Q ceq 7035   Q.cnq 7036    <Q cltq 7041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-mi 7062  df-lti 7063  df-enq 7103  df-nqqs 7104  df-ltnqqs 7109
This theorem is referenced by:  nqtric  7155  lt2addnq  7160  lt2mulnq  7161  ltbtwnnqq  7171  prarloclemarch2  7175  genplt2i  7266  genpdisj  7279  addlocprlemgt  7290  nqprdisj  7300  nqprloc  7301  addnqprlemfl  7315  addnqprlemfu  7316  prmuloclemcalc  7321  mulnqprlemfl  7331  mulnqprlemfu  7332  distrlem4prl  7340  distrlem4pru  7341  ltsopr  7352  ltexprlemopl  7357  ltexprlemopu  7359  ltexprlemdisj  7362  ltexprlemru  7368  recexprlemlol  7382  recexprlemupu  7384  recexprlemdisj  7386  recexprlemss1l  7391  recexprlemss1u  7392  cauappcvgprlemopl  7402  cauappcvgprlemlol  7403  cauappcvgprlemupu  7405  cauappcvgprlemdisj  7407  cauappcvgprlemloc  7408  cauappcvgprlemladdfu  7410  cauappcvgprlemladdru  7412  cauappcvgprlemladdrl  7413  caucvgprlemk  7421  caucvgprlemnkj  7422  caucvgprlemnbj  7423  caucvgprlemm  7424  caucvgprlemopl  7425  caucvgprlemlol  7426  caucvgprlemupu  7428  caucvgprlemloc  7431  caucvgprlemladdfu  7433  caucvgprprlemloccalc  7440  caucvgprprlemml  7450  caucvgprprlemopl  7453
  Copyright terms: Public domain W3C validator