ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsonq Unicode version

Theorem ltsonq 7581
Description: 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.)
Assertion
Ref Expression
ltsonq  |-  <Q  Or  Q.

Proof of Theorem ltsonq
Dummy variables  a  b  c  d  e  f  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7531 . . . . . 6  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 id 19 . . . . . . . 8  |-  ( [
<. z ,  w >. ]  ~Q  =  x  ->  [ <. z ,  w >. ]  ~Q  =  x )
32, 2breq12d 4095 . . . . . . 7  |-  ( [
<. z ,  w >. ]  ~Q  =  x  -> 
( [ <. z ,  w >. ]  ~Q  <Q  [
<. z ,  w >. ]  ~Q  <->  x  <Q  x ) )
43notbid 671 . . . . . 6  |-  ( [
<. z ,  w >. ]  ~Q  =  x  -> 
( -.  [ <. z ,  w >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  -.  x  <Q  x ) )
5 ltsopi 7503 . . . . . . . 8  |-  <N  Or  N.
6 ltrelpi 7507 . . . . . . . 8  |-  <N  C_  ( N.  X.  N. )
75, 6soirri 5122 . . . . . . 7  |-  -.  (
w  .N  z ) 
<N  ( w  .N  z
)
8 ordpipqqs 7557 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( z  .N  w )  <N  (
w  .N  z ) ) )
98anidms 397 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [
<. z ,  w >. ]  ~Q  <->  ( z  .N  w )  <N  (
w  .N  z ) ) )
10 mulcompig 7514 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  .N  w
)  =  ( w  .N  z ) )
1110breq1d 4092 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  .N  w )  <N  (
w  .N  z )  <-> 
( w  .N  z
)  <N  ( w  .N  z ) ) )
129, 11bitrd 188 . . . . . . 7  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [
<. z ,  w >. ]  ~Q  <->  ( w  .N  z )  <N  (
w  .N  z ) ) )
137, 12mtbiri 679 . . . . . 6  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  -.  [ <. z ,  w >. ]  ~Q  <Q  [
<. z ,  w >. ]  ~Q  )
141, 4, 13ecoptocl 6767 . . . . 5  |-  ( x  e.  Q.  ->  -.  x  <Q  x )
1514adantl 277 . . . 4  |-  ( ( T.  /\  x  e. 
Q. )  ->  -.  x  <Q  x )
16 breq1 4085 . . . . . . . 8  |-  ( [
<. a ,  b >. ]  ~Q  =  x  -> 
( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d
>. ]  ~Q  <->  x  <Q  [
<. c ,  d >. ]  ~Q  ) )
1716anbi1d 465 . . . . . . 7  |-  ( [
<. a ,  b >. ]  ~Q  =  x  -> 
( ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d
>. ]  ~Q  /\  [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) 
<->  ( x  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) ) )
18 breq1 4085 . . . . . . 7  |-  ( [
<. a ,  b >. ]  ~Q  =  x  -> 
( [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  <->  x  <Q  [
<. e ,  f >. ]  ~Q  ) )
1917, 18imbi12d 234 . . . . . 6  |-  ( [
<. a ,  b >. ]  ~Q  =  x  -> 
( ( ( [
<. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  )  ->  [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  )  <->  ( (
x  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  )  ->  x  <Q  [ <. e ,  f >. ]  ~Q  ) ) )
20 breq2 4086 . . . . . . . 8  |-  ( [
<. c ,  d >. ]  ~Q  =  y  -> 
( x  <Q  [ <. c ,  d >. ]  ~Q  <->  x 
<Q  y ) )
21 breq1 4085 . . . . . . . 8  |-  ( [
<. c ,  d >. ]  ~Q  =  y  -> 
( [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  <->  y  <Q  [
<. e ,  f >. ]  ~Q  ) )
2220, 21anbi12d 473 . . . . . . 7  |-  ( [
<. c ,  d >. ]  ~Q  =  y  -> 
( ( x  <Q  [
<. c ,  d >. ]  ~Q  /\  [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  )  <->  ( x  <Q  y  /\  y  <Q  [ <. e ,  f
>. ]  ~Q  ) ) )
2322imbi1d 231 . . . . . 6  |-  ( [
<. c ,  d >. ]  ~Q  =  y  -> 
( ( ( x 
<Q  [ <. c ,  d
>. ]  ~Q  /\  [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  )  ->  x  <Q  [ <. e ,  f >. ]  ~Q  ) 
<->  ( ( x  <Q  y  /\  y  <Q  [ <. e ,  f >. ]  ~Q  )  ->  x  <Q  [ <. e ,  f >. ]  ~Q  ) ) )
24 breq2 4086 . . . . . . . 8  |-  ( [
<. e ,  f >. ]  ~Q  =  z  -> 
( y  <Q  [ <. e ,  f >. ]  ~Q  <->  y 
<Q  z ) )
2524anbi2d 464 . . . . . . 7  |-  ( [
<. e ,  f >. ]  ~Q  =  z  -> 
( ( x  <Q  y  /\  y  <Q  [ <. e ,  f >. ]  ~Q  ) 
<->  ( x  <Q  y  /\  y  <Q  z ) ) )
26 breq2 4086 . . . . . . 7  |-  ( [
<. e ,  f >. ]  ~Q  =  z  -> 
( x  <Q  [ <. e ,  f >. ]  ~Q  <->  x 
<Q  z ) )
2725, 26imbi12d 234 . . . . . 6  |-  ( [
<. e ,  f >. ]  ~Q  =  z  -> 
( ( ( x 
<Q  y  /\  y  <Q  [ <. e ,  f
>. ]  ~Q  )  ->  x  <Q  [ <. e ,  f >. ]  ~Q  ) 
<->  ( ( x  <Q  y  /\  y  <Q  z
)  ->  x  <Q  z ) ) )
28 ordpipqqs 7557 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )
)  ->  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  <->  ( a  .N  d ) 
<N  ( b  .N  c
) ) )
29283adant3 1041 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  <->  ( a  .N  d ) 
<N  ( b  .N  c
) ) )
30 simp1l 1045 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  a  e.  N. )
31 simp2r 1048 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  d  e.  N. )
32 mulclpi 7511 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  N.  /\  d  e.  N. )  ->  ( a  .N  d
)  e.  N. )
3330, 31, 32syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( a  .N  d )  e.  N. )
34 simp1r 1046 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  b  e.  N. )
35 simp2l 1047 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  c  e.  N. )
36 mulclpi 7511 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  N.  /\  c  e.  N. )  ->  ( b  .N  c
)  e.  N. )
3734, 35, 36syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( b  .N  c )  e.  N. )
38 simp3r 1050 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  f  e.  N. )
39 mulclpi 7511 . . . . . . . . . . . . . . . . 17  |-  ( ( c  e.  N.  /\  f  e.  N. )  ->  ( c  .N  f
)  e.  N. )
4035, 38, 39syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( c  .N  f )  e.  N. )
41 ltmpig 7522 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  .N  d
)  e.  N.  /\  ( b  .N  c
)  e.  N.  /\  ( c  .N  f
)  e.  N. )  ->  ( ( a  .N  d )  <N  (
b  .N  c )  <-> 
( ( c  .N  f )  .N  (
a  .N  d ) )  <N  ( (
c  .N  f )  .N  ( b  .N  c ) ) ) )
4233, 37, 40, 41syl3anc 1271 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
a  .N  d ) 
<N  ( b  .N  c
)  <->  ( ( c  .N  f )  .N  ( a  .N  d
) )  <N  (
( c  .N  f
)  .N  ( b  .N  c ) ) ) )
4329, 42bitrd 188 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  <->  ( ( c  .N  f
)  .N  ( a  .N  d ) ) 
<N  ( ( c  .N  f )  .N  (
b  .N  c ) ) ) )
4443biimpa 296 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d
>. ]  ~Q  )  -> 
( ( c  .N  f )  .N  (
a  .N  d ) )  <N  ( (
c  .N  f )  .N  ( b  .N  c ) ) )
4544adantrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( c  .N  f
)  .N  ( a  .N  d ) ) 
<N  ( ( c  .N  f )  .N  (
b  .N  c ) ) )
46 mulcompig 7514 . . . . . . . . . . . . . 14  |-  ( ( ( c  .N  f
)  e.  N.  /\  ( b  .N  c
)  e.  N. )  ->  ( ( c  .N  f )  .N  (
b  .N  c ) )  =  ( ( b  .N  c )  .N  ( c  .N  f ) ) )
4740, 37, 46syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  f )  .N  ( b  .N  c ) )  =  ( ( b  .N  c )  .N  (
c  .N  f ) ) )
4847adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( c  .N  f
)  .N  ( b  .N  c ) )  =  ( ( b  .N  c )  .N  ( c  .N  f
) ) )
4945, 48breqtrd 4108 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( c  .N  f
)  .N  ( a  .N  d ) ) 
<N  ( ( b  .N  c )  .N  (
c  .N  f ) ) )
50 ordpipqqs 7557 . . . . . . . . . . . . . . 15  |-  ( ( ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( c  .N  f ) 
<N  ( d  .N  e
) ) )
51503adant1 1039 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( c  .N  f ) 
<N  ( d  .N  e
) ) )
52 simp3l 1049 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  e  e.  N. )
53 mulclpi 7511 . . . . . . . . . . . . . . . 16  |-  ( ( d  e.  N.  /\  e  e.  N. )  ->  ( d  .N  e
)  e.  N. )
5431, 52, 53syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( d  .N  e )  e.  N. )
55 ltmpig 7522 . . . . . . . . . . . . . . 15  |-  ( ( ( c  .N  f
)  e.  N.  /\  ( d  .N  e
)  e.  N.  /\  ( b  .N  c
)  e.  N. )  ->  ( ( c  .N  f )  <N  (
d  .N  e )  <-> 
( ( b  .N  c )  .N  (
c  .N  f ) )  <N  ( (
b  .N  c )  .N  ( d  .N  e ) ) ) )
5640, 54, 37, 55syl3anc 1271 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  f ) 
<N  ( d  .N  e
)  <->  ( ( b  .N  c )  .N  ( c  .N  f
) )  <N  (
( b  .N  c
)  .N  ( d  .N  e ) ) ) )
5751, 56bitrd 188 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( ( b  .N  c
)  .N  ( c  .N  f ) ) 
<N  ( ( b  .N  c )  .N  (
d  .N  e ) ) ) )
5857biimpa 296 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  [ <. c ,  d >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  )  -> 
( ( b  .N  c )  .N  (
c  .N  f ) )  <N  ( (
b  .N  c )  .N  ( d  .N  e ) ) )
5958adantrl 478 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( b  .N  c
)  .N  ( c  .N  f ) ) 
<N  ( ( b  .N  c )  .N  (
d  .N  e ) ) )
605, 6sotri 5123 . . . . . . . . . . 11  |-  ( ( ( ( c  .N  f )  .N  (
a  .N  d ) )  <N  ( (
b  .N  c )  .N  ( c  .N  f ) )  /\  ( ( b  .N  c )  .N  (
c  .N  f ) )  <N  ( (
b  .N  c )  .N  ( d  .N  e ) ) )  ->  ( ( c  .N  f )  .N  ( a  .N  d
) )  <N  (
( b  .N  c
)  .N  ( d  .N  e ) ) )
6149, 59, 60syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( c  .N  f
)  .N  ( a  .N  d ) ) 
<N  ( ( b  .N  c )  .N  (
d  .N  e ) ) )
62 mulcompig 7514 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
6362adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( x  e.  N.  /\  y  e. 
N. ) )  -> 
( x  .N  y
)  =  ( y  .N  x ) )
64 mulasspig 7515 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
6564adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( x  e.  N.  /\  y  e. 
N.  /\  z  e.  N. ) )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
66 mulclpi 7511 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  e.  N. )
6766adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( x  e.  N.  /\  y  e. 
N. ) )  -> 
( x  .N  y
)  e.  N. )
6835, 31, 30, 63, 65, 38, 67caov411d 6190 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  d )  .N  ( a  .N  f ) )  =  ( ( a  .N  d )  .N  (
c  .N  f ) ) )
6963, 33, 40caovcomd 6161 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
a  .N  d )  .N  ( c  .N  f ) )  =  ( ( c  .N  f )  .N  (
a  .N  d ) ) )
7068, 69eqtrd 2262 . . . . . . . . . . . 12  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  d )  .N  ( a  .N  f ) )  =  ( ( c  .N  f )  .N  (
a  .N  d ) ) )
7135, 31, 34, 63, 65, 52, 67caov4d 6189 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  d )  .N  ( b  .N  e ) )  =  ( ( c  .N  b )  .N  (
d  .N  e ) ) )
7263, 35, 34caovcomd 6161 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( c  .N  b )  =  ( b  .N  c ) )
7372oveq1d 6015 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  b )  .N  ( d  .N  e ) )  =  ( ( b  .N  c )  .N  (
d  .N  e ) ) )
7471, 73eqtrd 2262 . . . . . . . . . . . 12  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
c  .N  d )  .N  ( b  .N  e ) )  =  ( ( b  .N  c )  .N  (
d  .N  e ) ) )
7570, 74breq12d 4095 . . . . . . . . . . 11  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
( c  .N  d
)  .N  ( a  .N  f ) ) 
<N  ( ( c  .N  d )  .N  (
b  .N  e ) )  <->  ( ( c  .N  f )  .N  ( a  .N  d
) )  <N  (
( b  .N  c
)  .N  ( d  .N  e ) ) ) )
7675adantr 276 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( ( c  .N  d )  .N  (
a  .N  f ) )  <N  ( (
c  .N  d )  .N  ( b  .N  e ) )  <->  ( (
c  .N  f )  .N  ( a  .N  d ) )  <N 
( ( b  .N  c )  .N  (
d  .N  e ) ) ) )
7761, 76mpbird 167 . . . . . . . . 9  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( c  .N  d
)  .N  ( a  .N  f ) ) 
<N  ( ( c  .N  d )  .N  (
b  .N  e ) ) )
78 mulclpi 7511 . . . . . . . . . . . 12  |-  ( ( a  e.  N.  /\  f  e.  N. )  ->  ( a  .N  f
)  e.  N. )
7930, 38, 78syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( a  .N  f )  e.  N. )
80 mulclpi 7511 . . . . . . . . . . . 12  |-  ( ( b  e.  N.  /\  e  e.  N. )  ->  ( b  .N  e
)  e.  N. )
8134, 52, 80syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( b  .N  e )  e.  N. )
82 mulclpi 7511 . . . . . . . . . . . 12  |-  ( ( c  e.  N.  /\  d  e.  N. )  ->  ( c  .N  d
)  e.  N. )
8335, 31, 82syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( c  .N  d )  e.  N. )
84 ltmpig 7522 . . . . . . . . . . 11  |-  ( ( ( a  .N  f
)  e.  N.  /\  ( b  .N  e
)  e.  N.  /\  ( c  .N  d
)  e.  N. )  ->  ( ( a  .N  f )  <N  (
b  .N  e )  <-> 
( ( c  .N  d )  .N  (
a  .N  f ) )  <N  ( (
c  .N  d )  .N  ( b  .N  e ) ) ) )
8579, 81, 83, 84syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( (
a  .N  f ) 
<N  ( b  .N  e
)  <->  ( ( c  .N  d )  .N  ( a  .N  f
) )  <N  (
( c  .N  d
)  .N  ( b  .N  e ) ) ) )
8685adantr 276 . . . . . . . . 9  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
( a  .N  f
)  <N  ( b  .N  e )  <->  ( (
c  .N  d )  .N  ( a  .N  f ) )  <N 
( ( c  .N  d )  .N  (
b  .N  e ) ) ) )
8777, 86mpbird 167 . . . . . . . 8  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  (
a  .N  f ) 
<N  ( b  .N  e
) )
88 ordpipqqs 7557 . . . . . . . . . 10  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( a  .N  f ) 
<N  ( b  .N  e
) ) )
89883adant2 1040 . . . . . . . . 9  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( a  .N  f ) 
<N  ( b  .N  e
) ) )
9089adantr 276 . . . . . . . 8  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  ( [ <. a ,  b
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  <->  ( a  .N  f ) 
<N  ( b  .N  e
) ) )
9187, 90mpbird 167 . . . . . . 7  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  /\  ( [ <. a ,  b >. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  ) )  ->  [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  )
9291ex 115 . . . . . 6  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( c  e.  N.  /\  d  e.  N. )  /\  ( e  e.  N.  /\  f  e.  N. )
)  ->  ( ( [ <. a ,  b
>. ]  ~Q  <Q  [ <. c ,  d >. ]  ~Q  /\ 
[ <. c ,  d
>. ]  ~Q  <Q  [ <. e ,  f >. ]  ~Q  )  ->  [ <. a ,  b >. ]  ~Q  <Q  [ <. e ,  f
>. ]  ~Q  ) )
931, 19, 23, 27, 923ecoptocl 6769 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( x  <Q  y  /\  y  <Q  z )  ->  x  <Q  z
) )
9493adantl 277 . . . 4  |-  ( ( T.  /\  ( x  e.  Q.  /\  y  e.  Q.  /\  z  e. 
Q. ) )  -> 
( ( x  <Q  y  /\  y  <Q  z
)  ->  x  <Q  z ) )
9515, 94ispod 4394 . . 3  |-  ( T. 
->  <Q  Po  Q. )
96 nqtri3or 7579 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  \/  x  =  y  \/  y  <Q  x ) )
9796adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  Q.  /\  y  e.  Q. ) )  -> 
( x  <Q  y  \/  x  =  y  \/  y  <Q  x ) )
9895, 97issod 4409 . 2  |-  ( T. 
->  <Q  Or  Q. )
9998mptru 1404 1  |-  <Q  Or  Q.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 1001    /\ w3a 1002    = wceq 1395   T. wtru 1396    e. wcel 2200   <.cop 3669   class class class wbr 4082    Or wor 4385  (class class class)co 6000   [cec 6676   N.cnpi 7455    .N cmi 7457    <N clti 7458    ~Q ceq 7462   Q.cnq 7463    <Q cltq 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-mi 7489  df-lti 7490  df-enq 7530  df-nqqs 7531  df-ltnqqs 7536
This theorem is referenced by:  nqtric  7582  lt2addnq  7587  lt2mulnq  7588  ltbtwnnqq  7598  prarloclemarch2  7602  genplt2i  7693  genpdisj  7706  addlocprlemgt  7717  nqprdisj  7727  nqprloc  7728  addnqprlemfl  7742  addnqprlemfu  7743  prmuloclemcalc  7748  mulnqprlemfl  7758  mulnqprlemfu  7759  distrlem4prl  7767  distrlem4pru  7768  ltsopr  7779  ltexprlemopl  7784  ltexprlemopu  7786  ltexprlemdisj  7789  ltexprlemru  7795  recexprlemlol  7809  recexprlemupu  7811  recexprlemdisj  7813  recexprlemss1l  7818  recexprlemss1u  7819  cauappcvgprlemopl  7829  cauappcvgprlemlol  7830  cauappcvgprlemupu  7832  cauappcvgprlemdisj  7834  cauappcvgprlemloc  7835  cauappcvgprlemladdfu  7837  cauappcvgprlemladdru  7839  cauappcvgprlemladdrl  7840  caucvgprlemk  7848  caucvgprlemnkj  7849  caucvgprlemnbj  7850  caucvgprlemm  7851  caucvgprlemopl  7852  caucvgprlemlol  7853  caucvgprlemupu  7855  caucvgprlemloc  7858  caucvgprlemladdfu  7860  caucvgprprlemloccalc  7867  caucvgprprlemml  7877  caucvgprprlemopl  7880  suplocexprlemru  7902
  Copyright terms: Public domain W3C validator