ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlem1 Unicode version

Theorem caucvgprprlem1 7541
Description: Lemma for caucvgprpr 7544. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
caucvgprprlemlim.q  |-  ( ph  ->  Q  e.  P. )
caucvgprprlemlim.jk  |-  ( ph  ->  J  <N  K )
caucvgprprlemlim.jkq  |-  ( ph  -> 
<. { l  |  l 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
Assertion
Ref Expression
caucvgprprlem1  |-  ( ph  ->  ( F `  K
)  <P  ( L  +P.  Q ) )
Distinct variable groups:    A, m    m, F    A, r    F, r, l, u, n, k    J, l, u    K, l, r, u    Q, r   
k, L    ph, r    q, p, r, l, u    m, r    k, l, u, r, p, q    n, l, u, r
Allowed substitution hints:    ph( u, k, m, n, q, p, l)    A( u, k, n, q, p, l)    Q( u, k, m, n, q, p, l)    F( q, p)    J( k, m, n, r, q, p)    K( k, m, n, q, p)    L( u, m, n, r, q, p, l)

Proof of Theorem caucvgprprlem1
StepHypRef Expression
1 caucvgprpr.f . 2  |-  ( ph  ->  F : N. --> P. )
2 caucvgprpr.cau . 2  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
3 caucvgprpr.bnd . 2  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
4 caucvgprpr.lim . 2  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
5 caucvgprprlemlim.jk . . . . 5  |-  ( ph  ->  J  <N  K )
6 ltrelpi 7156 . . . . . 6  |-  <N  C_  ( N.  X.  N. )
76brel 4599 . . . . 5  |-  ( J 
<N  K  ->  ( J  e.  N.  /\  K  e.  N. ) )
85, 7syl 14 . . . 4  |-  ( ph  ->  ( J  e.  N.  /\  K  e.  N. )
)
98simprd 113 . . 3  |-  ( ph  ->  K  e.  N. )
101, 9ffvelrnd 5564 . 2  |-  ( ph  ->  ( F `  K
)  e.  P. )
11 caucvgprprlemlim.q . 2  |-  ( ph  ->  Q  e.  P. )
12 caucvgprprlemlim.jkq . . . . . 6  |-  ( ph  -> 
<. { l  |  l 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
135, 12caucvgprprlemk 7515 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
14 nnnq 7254 . . . . . . . 8  |-  ( K  e.  N.  ->  [ <. K ,  1o >. ]  ~Q  e.  Q. )
159, 14syl 14 . . . . . . 7  |-  ( ph  ->  [ <. K ,  1o >. ]  ~Q  e.  Q. )
16 recclnq 7224 . . . . . . 7  |-  ( [
<. K ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  e.  Q. )
17 nqprlu 7379 . . . . . . 7  |-  ( ( *Q `  [ <. K ,  1o >. ]  ~Q  )  e.  Q.  ->  <. { l  |  l 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
1815, 16, 173syl 17 . . . . . 6  |-  ( ph  -> 
<. { l  |  l 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
19 ltaprg 7451 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P.  /\  Q  e.  P.  /\  ( F `  K )  e.  P. )  -> 
( <. { l  |  l  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q  <->  ( ( F `  K )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  (
( F `  K
)  +P.  Q )
) )
2018, 11, 10, 19syl3anc 1217 . . . . 5  |-  ( ph  ->  ( <. { l  |  l  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q  <->  ( ( F `  K )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  (
( F `  K
)  +P.  Q )
) )
2113, 20mpbid 146 . . . 4  |-  ( ph  ->  ( ( F `  K )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( ( F `  K )  +P.  Q
) )
22 opeq1 3713 . . . . . . . . . . . 12  |-  ( r  =  K  ->  <. r ,  1o >.  =  <. K ,  1o >. )
2322eceq1d 6473 . . . . . . . . . . 11  |-  ( r  =  K  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. K ,  1o >. ]  ~Q  )
2423fveq2d 5433 . . . . . . . . . 10  |-  ( r  =  K  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )
2524breq2d 3949 . . . . . . . . 9  |-  ( r  =  K  ->  (
l  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  l  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) )
2625abbidv 2258 . . . . . . . 8  |-  ( r  =  K  ->  { l  |  l  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } )
2724breq1d 3947 . . . . . . . . 9  |-  ( r  =  K  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u  <->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u ) )
2827abbidv 2258 . . . . . . . 8  |-  ( r  =  K  ->  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u }  =  {
u  |  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )  <Q  u } )
2926, 28opeq12d 3721 . . . . . . 7  |-  ( r  =  K  ->  <. { l  |  l  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u } >.  =  <. { l  |  l  <Q 
( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >. )
3029oveq2d 5798 . . . . . 6  |-  ( r  =  K  ->  (
( F `  K
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u } >. )  =  ( ( F `  K
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >. ) )
31 fveq2 5429 . . . . . . 7  |-  ( r  =  K  ->  ( F `  r )  =  ( F `  K ) )
3231oveq1d 5797 . . . . . 6  |-  ( r  =  K  ->  (
( F `  r
)  +P.  Q )  =  ( ( F `
 K )  +P. 
Q ) )
3330, 32breq12d 3950 . . . . 5  |-  ( r  =  K  ->  (
( ( F `  K )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( ( F `  r )  +P.  Q
)  <->  ( ( F `
 K )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( ( F `  K )  +P.  Q
) ) )
3433rspcev 2793 . . . 4  |-  ( ( K  e.  N.  /\  ( ( F `  K )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( ( F `  K )  +P.  Q
) )  ->  E. r  e.  N.  ( ( F `
 K )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( ( F `  r )  +P.  Q
) )
359, 21, 34syl2anc 409 . . 3  |-  ( ph  ->  E. r  e.  N.  ( ( F `  K )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  ( ( F `  r )  +P.  Q
) )
36 breq1 3940 . . . . . . . 8  |-  ( l  =  p  ->  (
l  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) )
3736cbvabv 2265 . . . . . . 7  |-  { l  |  l  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) }
38 breq2 3941 . . . . . . . 8  |-  ( u  =  q  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u  <->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q ) )
3938cbvabv 2265 . . . . . . 7  |-  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u }  =  {
q  |  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )  <Q  q }
4037, 39opeq12i 3718 . . . . . 6  |-  <. { l  |  l  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >.
4140oveq2i 5793 . . . . 5  |-  ( ( F `  K )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u } >. )  =  ( ( F `  K
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )
4241breq1i 3944 . . . 4  |-  ( ( ( F `  K
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  (
( F `  r
)  +P.  Q )  <->  ( ( F `  K
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  r )  +P.  Q
) )
4342rexbii 2445 . . 3  |-  ( E. r  e.  N.  (
( F `  K
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  (
( F `  r
)  +P.  Q )  <->  E. r  e.  N.  (
( F `  K
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  r )  +P.  Q
) )
4435, 43sylib 121 . 2  |-  ( ph  ->  E. r  e.  N.  ( ( F `  K )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  r )  +P.  Q
) )
451, 2, 3, 4, 10, 11, 44caucvgprprlemaddq 7540 1  |-  ( ph  ->  ( F `  K
)  <P  ( L  +P.  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {cab 2126   A.wral 2417   E.wrex 2418   {crab 2421   <.cop 3535   class class class wbr 3937   -->wf 5127   ` cfv 5131  (class class class)co 5782   1oc1o 6314   [cec 6435   N.cnpi 7104    <N clti 7107    ~Q ceq 7111   Q.cnq 7112    +Q cplq 7114   *Qcrq 7116    <Q cltq 7117   P.cnp 7123    +P. cpp 7125    <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302
This theorem is referenced by:  caucvgprprlemlim  7543
  Copyright terms: Public domain W3C validator