ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem1 Unicode version

Theorem caucvgprlem1 7746
Description: Lemma for caucvgpr 7749. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
caucvgprlemlim.q  |-  ( ph  ->  Q  e.  Q. )
caucvgprlemlim.jk  |-  ( ph  ->  J  <N  K )
caucvgprlemlim.jkq  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
Assertion
Ref Expression
caucvgprlem1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  K
) } ,  {
u  |  ( F `
 K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
Distinct variable groups:    A, j    j, F, l, u    j, K, l, u    Q, j, l, u    Q, k   
j, L, k    u, j    k, F, n    j,
k
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    Q( n)    J( u, j, k, n, l)    K( k, n)    L( u, n, l)

Proof of Theorem caucvgprlem1
StepHypRef Expression
1 caucvgprlemlim.jk . . . . . 6  |-  ( ph  ->  J  <N  K )
2 ltrelpi 7391 . . . . . . 7  |-  <N  C_  ( N.  X.  N. )
32brel 4715 . . . . . 6  |-  ( J 
<N  K  ->  ( J  e.  N.  /\  K  e.  N. ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  ( J  e.  N.  /\  K  e.  N. )
)
54simprd 114 . . . 4  |-  ( ph  ->  K  e.  N. )
6 caucvgprlemlim.jkq . . . . . 6  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
71, 6caucvgprlemk 7732 . . . . 5  |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
8 caucvgpr.f . . . . . 6  |-  ( ph  ->  F : N. --> Q. )
98, 5ffvelcdmd 5698 . . . . 5  |-  ( ph  ->  ( F `  K
)  e.  Q. )
10 ltanqi 7469 . . . . 5  |-  ( ( ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q  /\  ( F `  K )  e.  Q. )  -> 
( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )
117, 9, 10syl2anc 411 . . . 4  |-  ( ph  ->  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )
12 opeq1 3808 . . . . . . . . 9  |-  ( j  =  K  ->  <. j ,  1o >.  =  <. K ,  1o >. )
1312eceq1d 6628 . . . . . . . 8  |-  ( j  =  K  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. K ,  1o >. ]  ~Q  )
1413fveq2d 5562 . . . . . . 7  |-  ( j  =  K  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )
1514oveq2d 5938 . . . . . 6  |-  ( j  =  K  ->  (
( F `  K
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) )
16 fveq2 5558 . . . . . . 7  |-  ( j  =  K  ->  ( F `  j )  =  ( F `  K ) )
1716oveq1d 5937 . . . . . 6  |-  ( j  =  K  ->  (
( F `  j
)  +Q  Q )  =  ( ( F `
 K )  +Q  Q ) )
1815, 17breq12d 4046 . . . . 5  |-  ( j  =  K  ->  (
( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  K )  +Q  Q
) ) )
1918rspcev 2868 . . . 4  |-  ( ( K  e.  N.  /\  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )  ->  E. j  e.  N.  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) )
205, 11, 19syl2anc 411 . . 3  |-  ( ph  ->  E. j  e.  N.  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) )
21 oveq1 5929 . . . . . . . 8  |-  ( l  =  ( F `  K )  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
2221breq1d 4043 . . . . . . 7  |-  ( l  =  ( F `  K )  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
2322rexbidv 2498 . . . . . 6  |-  ( l  =  ( F `  K )  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
2423elrab3 2921 . . . . 5  |-  ( ( F `  K )  e.  Q.  ->  (
( F `  K
)  e.  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
259, 24syl 14 . . . 4  |-  ( ph  ->  ( ( F `  K )  e.  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
26 caucvgpr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
27 caucvgpr.bnd . . . . . 6  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
28 caucvgpr.lim . . . . . 6  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
29 caucvgprlemlim.q . . . . . 6  |-  ( ph  ->  Q  e.  Q. )
308, 26, 27, 28, 29caucvgprlemladdrl 7745 . . . . 5  |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
3130sseld 3182 . . . 4  |-  ( ph  ->  ( ( F `  K )  e.  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  ->  ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3225, 31sylbird 170 . . 3  |-  ( ph  ->  ( E. j  e. 
N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
)  ->  ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3320, 32mpd 13 . 2  |-  ( ph  ->  ( F `  K
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
348, 26, 27, 28caucvgprlemcl 7743 . . . 4  |-  ( ph  ->  L  e.  P. )
35 nqprlu 7614 . . . . 5  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
3629, 35syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
37 addclpr 7604 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. )  e.  P. )
3834, 36, 37syl2anc 411 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )
39 nqprl 7618 . . 3  |-  ( ( ( F `  K
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )  ->  (
( F `  K
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. ) ) )
409, 38, 39syl2anc 411 . 2  |-  ( ph  ->  ( ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)  <->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
4133, 40mpbid 147 1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  K
) } ,  {
u  |  ( F `
 K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   {crab 2479   <.cop 3625   class class class wbr 4033   -->wf 5254   ` cfv 5258  (class class class)co 5922   1stc1st 6196   1oc1o 6467   [cec 6590   N.cnpi 7339    <N clti 7342    ~Q ceq 7346   Q.cnq 7347    +Q cplq 7349   *Qcrq 7351    <Q cltq 7352   P.cnp 7358    +P. cpp 7360    <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-iplp 7535  df-iltp 7537
This theorem is referenced by:  caucvgprlemlim  7748
  Copyright terms: Public domain W3C validator