| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprlem1 | Unicode version | ||
| Description: Lemma for caucvgpr 7830. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| caucvgpr.f |
|
| caucvgpr.cau |
|
| caucvgpr.bnd |
|
| caucvgpr.lim |
|
| caucvgprlemlim.q |
|
| caucvgprlemlim.jk |
|
| caucvgprlemlim.jkq |
|
| Ref | Expression |
|---|---|
| caucvgprlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprlemlim.jk |
. . . . . 6
| |
| 2 | ltrelpi 7472 |
. . . . . . 7
| |
| 3 | 2 | brel 4745 |
. . . . . 6
|
| 4 | 1, 3 | syl 14 |
. . . . 5
|
| 5 | 4 | simprd 114 |
. . . 4
|
| 6 | caucvgprlemlim.jkq |
. . . . . 6
| |
| 7 | 1, 6 | caucvgprlemk 7813 |
. . . . 5
|
| 8 | caucvgpr.f |
. . . . . 6
| |
| 9 | 8, 5 | ffvelcdmd 5739 |
. . . . 5
|
| 10 | ltanqi 7550 |
. . . . 5
| |
| 11 | 7, 9, 10 | syl2anc 411 |
. . . 4
|
| 12 | opeq1 3833 |
. . . . . . . . 9
| |
| 13 | 12 | eceq1d 6679 |
. . . . . . . 8
|
| 14 | 13 | fveq2d 5603 |
. . . . . . 7
|
| 15 | 14 | oveq2d 5983 |
. . . . . 6
|
| 16 | fveq2 5599 |
. . . . . . 7
| |
| 17 | 16 | oveq1d 5982 |
. . . . . 6
|
| 18 | 15, 17 | breq12d 4072 |
. . . . 5
|
| 19 | 18 | rspcev 2884 |
. . . 4
|
| 20 | 5, 11, 19 | syl2anc 411 |
. . 3
|
| 21 | oveq1 5974 |
. . . . . . . 8
| |
| 22 | 21 | breq1d 4069 |
. . . . . . 7
|
| 23 | 22 | rexbidv 2509 |
. . . . . 6
|
| 24 | 23 | elrab3 2937 |
. . . . 5
|
| 25 | 9, 24 | syl 14 |
. . . 4
|
| 26 | caucvgpr.cau |
. . . . . 6
| |
| 27 | caucvgpr.bnd |
. . . . . 6
| |
| 28 | caucvgpr.lim |
. . . . . 6
| |
| 29 | caucvgprlemlim.q |
. . . . . 6
| |
| 30 | 8, 26, 27, 28, 29 | caucvgprlemladdrl 7826 |
. . . . 5
|
| 31 | 30 | sseld 3200 |
. . . 4
|
| 32 | 25, 31 | sylbird 170 |
. . 3
|
| 33 | 20, 32 | mpd 13 |
. 2
|
| 34 | 8, 26, 27, 28 | caucvgprlemcl 7824 |
. . . 4
|
| 35 | nqprlu 7695 |
. . . . 5
| |
| 36 | 29, 35 | syl 14 |
. . . 4
|
| 37 | addclpr 7685 |
. . . 4
| |
| 38 | 34, 36, 37 | syl2anc 411 |
. . 3
|
| 39 | nqprl 7699 |
. . 3
| |
| 40 | 9, 38, 39 | syl2anc 411 |
. 2
|
| 41 | 33, 40 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-iplp 7616 df-iltp 7618 |
| This theorem is referenced by: caucvgprlemlim 7829 |
| Copyright terms: Public domain | W3C validator |