ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem1 Unicode version

Theorem caucvgprlem1 7827
Description: Lemma for caucvgpr 7830. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
caucvgprlemlim.q  |-  ( ph  ->  Q  e.  Q. )
caucvgprlemlim.jk  |-  ( ph  ->  J  <N  K )
caucvgprlemlim.jkq  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
Assertion
Ref Expression
caucvgprlem1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  K
) } ,  {
u  |  ( F `
 K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
Distinct variable groups:    A, j    j, F, l, u    j, K, l, u    Q, j, l, u    Q, k   
j, L, k    u, j    k, F, n    j,
k
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    Q( n)    J( u, j, k, n, l)    K( k, n)    L( u, n, l)

Proof of Theorem caucvgprlem1
StepHypRef Expression
1 caucvgprlemlim.jk . . . . . 6  |-  ( ph  ->  J  <N  K )
2 ltrelpi 7472 . . . . . . 7  |-  <N  C_  ( N.  X.  N. )
32brel 4745 . . . . . 6  |-  ( J 
<N  K  ->  ( J  e.  N.  /\  K  e.  N. ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  ( J  e.  N.  /\  K  e.  N. )
)
54simprd 114 . . . 4  |-  ( ph  ->  K  e.  N. )
6 caucvgprlemlim.jkq . . . . . 6  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
71, 6caucvgprlemk 7813 . . . . 5  |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
8 caucvgpr.f . . . . . 6  |-  ( ph  ->  F : N. --> Q. )
98, 5ffvelcdmd 5739 . . . . 5  |-  ( ph  ->  ( F `  K
)  e.  Q. )
10 ltanqi 7550 . . . . 5  |-  ( ( ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q  /\  ( F `  K )  e.  Q. )  -> 
( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )
117, 9, 10syl2anc 411 . . . 4  |-  ( ph  ->  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )
12 opeq1 3833 . . . . . . . . 9  |-  ( j  =  K  ->  <. j ,  1o >.  =  <. K ,  1o >. )
1312eceq1d 6679 . . . . . . . 8  |-  ( j  =  K  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. K ,  1o >. ]  ~Q  )
1413fveq2d 5603 . . . . . . 7  |-  ( j  =  K  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )
1514oveq2d 5983 . . . . . 6  |-  ( j  =  K  ->  (
( F `  K
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) )
16 fveq2 5599 . . . . . . 7  |-  ( j  =  K  ->  ( F `  j )  =  ( F `  K ) )
1716oveq1d 5982 . . . . . 6  |-  ( j  =  K  ->  (
( F `  j
)  +Q  Q )  =  ( ( F `
 K )  +Q  Q ) )
1815, 17breq12d 4072 . . . . 5  |-  ( j  =  K  ->  (
( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  K )  +Q  Q
) ) )
1918rspcev 2884 . . . 4  |-  ( ( K  e.  N.  /\  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )  ->  E. j  e.  N.  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) )
205, 11, 19syl2anc 411 . . 3  |-  ( ph  ->  E. j  e.  N.  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) )
21 oveq1 5974 . . . . . . . 8  |-  ( l  =  ( F `  K )  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
2221breq1d 4069 . . . . . . 7  |-  ( l  =  ( F `  K )  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
2322rexbidv 2509 . . . . . 6  |-  ( l  =  ( F `  K )  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
2423elrab3 2937 . . . . 5  |-  ( ( F `  K )  e.  Q.  ->  (
( F `  K
)  e.  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
259, 24syl 14 . . . 4  |-  ( ph  ->  ( ( F `  K )  e.  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
26 caucvgpr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
27 caucvgpr.bnd . . . . . 6  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
28 caucvgpr.lim . . . . . 6  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
29 caucvgprlemlim.q . . . . . 6  |-  ( ph  ->  Q  e.  Q. )
308, 26, 27, 28, 29caucvgprlemladdrl 7826 . . . . 5  |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
3130sseld 3200 . . . 4  |-  ( ph  ->  ( ( F `  K )  e.  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  ->  ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3225, 31sylbird 170 . . 3  |-  ( ph  ->  ( E. j  e. 
N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
)  ->  ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3320, 32mpd 13 . 2  |-  ( ph  ->  ( F `  K
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
348, 26, 27, 28caucvgprlemcl 7824 . . . 4  |-  ( ph  ->  L  e.  P. )
35 nqprlu 7695 . . . . 5  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
3629, 35syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
37 addclpr 7685 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. )  e.  P. )
3834, 36, 37syl2anc 411 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )
39 nqprl 7699 . . 3  |-  ( ( ( F `  K
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )  ->  (
( F `  K
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. ) ) )
409, 38, 39syl2anc 411 . 2  |-  ( ph  ->  ( ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)  <->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
4133, 40mpbid 147 1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  K
) } ,  {
u  |  ( F `
 K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   {crab 2490   <.cop 3646   class class class wbr 4059   -->wf 5286   ` cfv 5290  (class class class)co 5967   1stc1st 6247   1oc1o 6518   [cec 6641   N.cnpi 7420    <N clti 7423    ~Q ceq 7427   Q.cnq 7428    +Q cplq 7430   *Qcrq 7432    <Q cltq 7433   P.cnp 7439    +P. cpp 7441    <P cltp 7443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-iplp 7616  df-iltp 7618
This theorem is referenced by:  caucvgprlemlim  7829
  Copyright terms: Public domain W3C validator