ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem1 Unicode version

Theorem caucvgprlem1 7620
Description: Lemma for caucvgpr 7623. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
caucvgprlemlim.q  |-  ( ph  ->  Q  e.  Q. )
caucvgprlemlim.jk  |-  ( ph  ->  J  <N  K )
caucvgprlemlim.jkq  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
Assertion
Ref Expression
caucvgprlem1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  K
) } ,  {
u  |  ( F `
 K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
Distinct variable groups:    A, j    j, F, l, u    j, K, l, u    Q, j, l, u    Q, k   
j, L, k    u, j    k, F, n    j,
k
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    Q( n)    J( u, j, k, n, l)    K( k, n)    L( u, n, l)

Proof of Theorem caucvgprlem1
StepHypRef Expression
1 caucvgprlemlim.jk . . . . . 6  |-  ( ph  ->  J  <N  K )
2 ltrelpi 7265 . . . . . . 7  |-  <N  C_  ( N.  X.  N. )
32brel 4656 . . . . . 6  |-  ( J 
<N  K  ->  ( J  e.  N.  /\  K  e.  N. ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  ( J  e.  N.  /\  K  e.  N. )
)
54simprd 113 . . . 4  |-  ( ph  ->  K  e.  N. )
6 caucvgprlemlim.jkq . . . . . 6  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
71, 6caucvgprlemk 7606 . . . . 5  |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
8 caucvgpr.f . . . . . 6  |-  ( ph  ->  F : N. --> Q. )
98, 5ffvelrnd 5621 . . . . 5  |-  ( ph  ->  ( F `  K
)  e.  Q. )
10 ltanqi 7343 . . . . 5  |-  ( ( ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q  /\  ( F `  K )  e.  Q. )  -> 
( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )
117, 9, 10syl2anc 409 . . . 4  |-  ( ph  ->  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )
12 opeq1 3758 . . . . . . . . 9  |-  ( j  =  K  ->  <. j ,  1o >.  =  <. K ,  1o >. )
1312eceq1d 6537 . . . . . . . 8  |-  ( j  =  K  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. K ,  1o >. ]  ~Q  )
1413fveq2d 5490 . . . . . . 7  |-  ( j  =  K  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )
1514oveq2d 5858 . . . . . 6  |-  ( j  =  K  ->  (
( F `  K
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) )
16 fveq2 5486 . . . . . . 7  |-  ( j  =  K  ->  ( F `  j )  =  ( F `  K ) )
1716oveq1d 5857 . . . . . 6  |-  ( j  =  K  ->  (
( F `  j
)  +Q  Q )  =  ( ( F `
 K )  +Q  Q ) )
1815, 17breq12d 3995 . . . . 5  |-  ( j  =  K  ->  (
( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  K )  +Q  Q
) ) )
1918rspcev 2830 . . . 4  |-  ( ( K  e.  N.  /\  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )  ->  E. j  e.  N.  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) )
205, 11, 19syl2anc 409 . . 3  |-  ( ph  ->  E. j  e.  N.  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) )
21 oveq1 5849 . . . . . . . 8  |-  ( l  =  ( F `  K )  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
2221breq1d 3992 . . . . . . 7  |-  ( l  =  ( F `  K )  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
2322rexbidv 2467 . . . . . 6  |-  ( l  =  ( F `  K )  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
2423elrab3 2883 . . . . 5  |-  ( ( F `  K )  e.  Q.  ->  (
( F `  K
)  e.  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
259, 24syl 14 . . . 4  |-  ( ph  ->  ( ( F `  K )  e.  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
26 caucvgpr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
27 caucvgpr.bnd . . . . . 6  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
28 caucvgpr.lim . . . . . 6  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
29 caucvgprlemlim.q . . . . . 6  |-  ( ph  ->  Q  e.  Q. )
308, 26, 27, 28, 29caucvgprlemladdrl 7619 . . . . 5  |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
3130sseld 3141 . . . 4  |-  ( ph  ->  ( ( F `  K )  e.  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  ->  ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3225, 31sylbird 169 . . 3  |-  ( ph  ->  ( E. j  e. 
N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
)  ->  ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3320, 32mpd 13 . 2  |-  ( ph  ->  ( F `  K
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
348, 26, 27, 28caucvgprlemcl 7617 . . . 4  |-  ( ph  ->  L  e.  P. )
35 nqprlu 7488 . . . . 5  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
3629, 35syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
37 addclpr 7478 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. )  e.  P. )
3834, 36, 37syl2anc 409 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )
39 nqprl 7492 . . 3  |-  ( ( ( F `  K
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )  ->  (
( F `  K
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. ) ) )
409, 38, 39syl2anc 409 . 2  |-  ( ph  ->  ( ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)  <->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
4133, 40mpbid 146 1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  K
) } ,  {
u  |  ( F `
 K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   {crab 2448   <.cop 3579   class class class wbr 3982   -->wf 5184   ` cfv 5188  (class class class)co 5842   1stc1st 6106   1oc1o 6377   [cec 6499   N.cnpi 7213    <N clti 7216    ~Q ceq 7220   Q.cnq 7221    +Q cplq 7223   *Qcrq 7225    <Q cltq 7226   P.cnp 7232    +P. cpp 7234    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  caucvgprlemlim  7622
  Copyright terms: Public domain W3C validator