ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem1 Unicode version

Theorem caucvgprlem1 7739
Description: Lemma for caucvgpr 7742. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
caucvgprlemlim.q  |-  ( ph  ->  Q  e.  Q. )
caucvgprlemlim.jk  |-  ( ph  ->  J  <N  K )
caucvgprlemlim.jkq  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
Assertion
Ref Expression
caucvgprlem1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  K
) } ,  {
u  |  ( F `
 K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
Distinct variable groups:    A, j    j, F, l, u    j, K, l, u    Q, j, l, u    Q, k   
j, L, k    u, j    k, F, n    j,
k
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    Q( n)    J( u, j, k, n, l)    K( k, n)    L( u, n, l)

Proof of Theorem caucvgprlem1
StepHypRef Expression
1 caucvgprlemlim.jk . . . . . 6  |-  ( ph  ->  J  <N  K )
2 ltrelpi 7384 . . . . . . 7  |-  <N  C_  ( N.  X.  N. )
32brel 4711 . . . . . 6  |-  ( J 
<N  K  ->  ( J  e.  N.  /\  K  e.  N. ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  ( J  e.  N.  /\  K  e.  N. )
)
54simprd 114 . . . 4  |-  ( ph  ->  K  e.  N. )
6 caucvgprlemlim.jkq . . . . . 6  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
71, 6caucvgprlemk 7725 . . . . 5  |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
8 caucvgpr.f . . . . . 6  |-  ( ph  ->  F : N. --> Q. )
98, 5ffvelcdmd 5694 . . . . 5  |-  ( ph  ->  ( F `  K
)  e.  Q. )
10 ltanqi 7462 . . . . 5  |-  ( ( ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q  /\  ( F `  K )  e.  Q. )  -> 
( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )
117, 9, 10syl2anc 411 . . . 4  |-  ( ph  ->  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )
12 opeq1 3804 . . . . . . . . 9  |-  ( j  =  K  ->  <. j ,  1o >.  =  <. K ,  1o >. )
1312eceq1d 6623 . . . . . . . 8  |-  ( j  =  K  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. K ,  1o >. ]  ~Q  )
1413fveq2d 5558 . . . . . . 7  |-  ( j  =  K  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )
1514oveq2d 5934 . . . . . 6  |-  ( j  =  K  ->  (
( F `  K
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) )
16 fveq2 5554 . . . . . . 7  |-  ( j  =  K  ->  ( F `  j )  =  ( F `  K ) )
1716oveq1d 5933 . . . . . 6  |-  ( j  =  K  ->  (
( F `  j
)  +Q  Q )  =  ( ( F `
 K )  +Q  Q ) )
1815, 17breq12d 4042 . . . . 5  |-  ( j  =  K  ->  (
( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  K )  +Q  Q
) ) )
1918rspcev 2864 . . . 4  |-  ( ( K  e.  N.  /\  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )  ->  E. j  e.  N.  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) )
205, 11, 19syl2anc 411 . . 3  |-  ( ph  ->  E. j  e.  N.  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) )
21 oveq1 5925 . . . . . . . 8  |-  ( l  =  ( F `  K )  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
2221breq1d 4039 . . . . . . 7  |-  ( l  =  ( F `  K )  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  ( ( F `  K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
2322rexbidv 2495 . . . . . 6  |-  ( l  =  ( F `  K )  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q )  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
2423elrab3 2917 . . . . 5  |-  ( ( F `  K )  e.  Q.  ->  (
( F `  K
)  e.  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
259, 24syl 14 . . . 4  |-  ( ph  ->  ( ( F `  K )  e.  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  <->  E. j  e.  N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
) ) )
26 caucvgpr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
27 caucvgpr.bnd . . . . . 6  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
28 caucvgpr.lim . . . . . 6  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
29 caucvgprlemlim.q . . . . . 6  |-  ( ph  ->  Q  e.  Q. )
308, 26, 27, 28, 29caucvgprlemladdrl 7738 . . . . 5  |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
3130sseld 3178 . . . 4  |-  ( ph  ->  ( ( F `  K )  e.  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  Q ) }  ->  ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3225, 31sylbird 170 . . 3  |-  ( ph  ->  ( E. j  e. 
N.  ( ( F `
 K )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  j )  +Q  Q
)  ->  ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3320, 32mpd 13 . 2  |-  ( ph  ->  ( F `  K
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
348, 26, 27, 28caucvgprlemcl 7736 . . . 4  |-  ( ph  ->  L  e.  P. )
35 nqprlu 7607 . . . . 5  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
3629, 35syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
37 addclpr 7597 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. )  e.  P. )
3834, 36, 37syl2anc 411 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )
39 nqprl 7611 . . 3  |-  ( ( ( F `  K
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )  ->  (
( F `  K
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. ) ) )
409, 38, 39syl2anc 411 . 2  |-  ( ph  ->  ( ( F `  K )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)  <->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
4133, 40mpbid 147 1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  K
) } ,  {
u  |  ( F `
 K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   {crab 2476   <.cop 3621   class class class wbr 4029   -->wf 5250   ` cfv 5254  (class class class)co 5918   1stc1st 6191   1oc1o 6462   [cec 6585   N.cnpi 7332    <N clti 7335    ~Q ceq 7339   Q.cnq 7340    +Q cplq 7342   *Qcrq 7344    <Q cltq 7345   P.cnp 7351    +P. cpp 7353    <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-iltp 7530
This theorem is referenced by:  caucvgprlemlim  7741
  Copyright terms: Public domain W3C validator