ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemk Unicode version

Theorem caucvgprlemk 7727
Description: Lemma for caucvgpr 7744. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.)
Hypotheses
Ref Expression
caucvgprlemk.jk  |-  ( ph  ->  J  <N  K )
caucvgprlemk.jkq  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
Assertion
Ref Expression
caucvgprlemk  |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )

Proof of Theorem caucvgprlemk
StepHypRef Expression
1 caucvgprlemk.jk . . . 4  |-  ( ph  ->  J  <N  K )
2 ltrelpi 7386 . . . . . . 7  |-  <N  C_  ( N.  X.  N. )
32brel 4712 . . . . . 6  |-  ( J 
<N  K  ->  ( J  e.  N.  /\  K  e.  N. ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  ( J  e.  N.  /\  K  e.  N. )
)
5 ltnnnq 7485 . . . . 5  |-  ( ( J  e.  N.  /\  K  e.  N. )  ->  ( J  <N  K  <->  [ <. J ,  1o >. ]  ~Q  <Q  [
<. K ,  1o >. ]  ~Q  ) )
64, 5syl 14 . . . 4  |-  ( ph  ->  ( J  <N  K  <->  [ <. J ,  1o >. ]  ~Q  <Q  [
<. K ,  1o >. ]  ~Q  ) )
71, 6mpbid 147 . . 3  |-  ( ph  ->  [ <. J ,  1o >. ]  ~Q  <Q  [ <. K ,  1o >. ]  ~Q  )
8 ltrnqi 7483 . . 3  |-  ( [
<. J ,  1o >. ]  ~Q  <Q  [ <. K ,  1o >. ]  ~Q  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )
97, 8syl 14 . 2  |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)
10 caucvgprlemk.jkq . 2  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
11 ltsonq 7460 . . 3  |-  <Q  Or  Q.
12 ltrelnq 7427 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
1311, 12sotri 5062 . 2  |-  ( ( ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  /\  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
149, 10, 13syl2anc 411 1  |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   <.cop 3622   class class class wbr 4030   ` cfv 5255   1oc1o 6464   [cec 6587   N.cnpi 7334    <N clti 7337    ~Q ceq 7341   Q.cnq 7342   *Qcrq 7346    <Q cltq 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-mi 7368  df-lti 7369  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415
This theorem is referenced by:  caucvgprlem1  7741  caucvgprlem2  7742
  Copyright terms: Public domain W3C validator