| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlem2 | Unicode version | ||
| Description: Lemma for caucvgprpr 7855. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprpr.bnd |
|
| caucvgprpr.lim |
|
| caucvgprprlemlim.q |
|
| caucvgprprlemlim.jk |
|
| caucvgprprlemlim.jkq |
|
| Ref | Expression |
|---|---|
| caucvgprprlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprprlemlim.jk |
. . . . 5
| |
| 2 | caucvgprprlemlim.jkq |
. . . . 5
| |
| 3 | 1, 2 | caucvgprprlemk 7826 |
. . . 4
|
| 4 | ltrelpi 7467 |
. . . . . . . . . 10
| |
| 5 | 4 | brel 4740 |
. . . . . . . . 9
|
| 6 | 1, 5 | syl 14 |
. . . . . . . 8
|
| 7 | 6 | simprd 114 |
. . . . . . 7
|
| 8 | nnnq 7565 |
. . . . . . . 8
| |
| 9 | recclnq 7535 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
|
| 11 | 7, 10 | syl 14 |
. . . . . 6
|
| 12 | nqprlu 7690 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | caucvgprprlemlim.q |
. . . . 5
| |
| 15 | caucvgprpr.f |
. . . . . 6
| |
| 16 | 15, 7 | ffvelcdmd 5734 |
. . . . 5
|
| 17 | ltaprg 7762 |
. . . . 5
| |
| 18 | 13, 14, 16, 17 | syl3anc 1250 |
. . . 4
|
| 19 | 3, 18 | mpbid 147 |
. . 3
|
| 20 | addclpr 7680 |
. . . . 5
| |
| 21 | 16, 13, 20 | syl2anc 411 |
. . . 4
|
| 22 | addclpr 7680 |
. . . . 5
| |
| 23 | 16, 14, 22 | syl2anc 411 |
. . . 4
|
| 24 | ltdfpr 7649 |
. . . 4
| |
| 25 | 21, 23, 24 | syl2anc 411 |
. . 3
|
| 26 | 19, 25 | mpbid 147 |
. 2
|
| 27 | simprl 529 |
. . . 4
| |
| 28 | 7 | adantr 276 |
. . . . . 6
|
| 29 | simprrl 539 |
. . . . . . . 8
| |
| 30 | breq1 4057 |
. . . . . . . . . . . 12
| |
| 31 | 30 | cbvabv 2331 |
. . . . . . . . . . 11
|
| 32 | breq2 4058 |
. . . . . . . . . . . 12
| |
| 33 | 32 | cbvabv 2331 |
. . . . . . . . . . 11
|
| 34 | 31, 33 | opeq12i 3833 |
. . . . . . . . . 10
|
| 35 | 34 | oveq2i 5973 |
. . . . . . . . 9
|
| 36 | 35 | fveq2i 5597 |
. . . . . . . 8
|
| 37 | 29, 36 | eleqtrdi 2299 |
. . . . . . 7
|
| 38 | nqprlu 7690 |
. . . . . . . . . . 11
| |
| 39 | 11, 38 | syl 14 |
. . . . . . . . . 10
|
| 40 | addclpr 7680 |
. . . . . . . . . 10
| |
| 41 | 16, 39, 40 | syl2anc 411 |
. . . . . . . . 9
|
| 42 | 41 | adantr 276 |
. . . . . . . 8
|
| 43 | nqpru 7695 |
. . . . . . . 8
| |
| 44 | 27, 42, 43 | syl2anc 411 |
. . . . . . 7
|
| 45 | 37, 44 | mpbid 147 |
. . . . . 6
|
| 46 | fveq2 5594 |
. . . . . . . . 9
| |
| 47 | opeq1 3828 |
. . . . . . . . . . . . . 14
| |
| 48 | 47 | eceq1d 6674 |
. . . . . . . . . . . . 13
|
| 49 | 48 | fveq2d 5598 |
. . . . . . . . . . . 12
|
| 50 | 49 | breq2d 4066 |
. . . . . . . . . . 11
|
| 51 | 50 | abbidv 2324 |
. . . . . . . . . 10
|
| 52 | 49 | breq1d 4064 |
. . . . . . . . . . 11
|
| 53 | 52 | abbidv 2324 |
. . . . . . . . . 10
|
| 54 | 51, 53 | opeq12d 3836 |
. . . . . . . . 9
|
| 55 | 46, 54 | oveq12d 5980 |
. . . . . . . 8
|
| 56 | 55 | breq1d 4064 |
. . . . . . 7
|
| 57 | 56 | rspcev 2881 |
. . . . . 6
|
| 58 | 28, 45, 57 | syl2anc 411 |
. . . . 5
|
| 59 | breq2 4058 |
. . . . . . . . . 10
| |
| 60 | 59 | abbidv 2324 |
. . . . . . . . 9
|
| 61 | breq1 4057 |
. . . . . . . . . 10
| |
| 62 | 61 | abbidv 2324 |
. . . . . . . . 9
|
| 63 | 60, 62 | opeq12d 3836 |
. . . . . . . 8
|
| 64 | 63 | breq2d 4066 |
. . . . . . 7
|
| 65 | 64 | rexbidv 2508 |
. . . . . 6
|
| 66 | caucvgprpr.lim |
. . . . . . . 8
| |
| 67 | 66 | fveq2i 5597 |
. . . . . . 7
|
| 68 | nqex 7506 |
. . . . . . . . 9
| |
| 69 | 68 | rabex 4199 |
. . . . . . . 8
|
| 70 | 68 | rabex 4199 |
. . . . . . . 8
|
| 71 | 69, 70 | op2nd 6251 |
. . . . . . 7
|
| 72 | 67, 71 | eqtri 2227 |
. . . . . 6
|
| 73 | 65, 72 | elrab2 2936 |
. . . . 5
|
| 74 | 27, 58, 73 | sylanbrc 417 |
. . . 4
|
| 75 | simprrr 540 |
. . . 4
| |
| 76 | rspe 2556 |
. . . 4
| |
| 77 | 27, 74, 75, 76 | syl12anc 1248 |
. . 3
|
| 78 | caucvgprpr.cau |
. . . . . 6
| |
| 79 | caucvgprpr.bnd |
. . . . . 6
| |
| 80 | 15, 78, 79, 66 | caucvgprprlemcl 7847 |
. . . . 5
|
| 81 | 80 | adantr 276 |
. . . 4
|
| 82 | 23 | adantr 276 |
. . . 4
|
| 83 | ltdfpr 7649 |
. . . 4
| |
| 84 | 81, 82, 83 | syl2anc 411 |
. . 3
|
| 85 | 77, 84 | mpbird 167 |
. 2
|
| 86 | 26, 85 | rexlimddv 2629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-eprel 4349 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-1o 6520 df-2o 6521 df-oadd 6524 df-omul 6525 df-er 6638 df-ec 6640 df-qs 6644 df-ni 7447 df-pli 7448 df-mi 7449 df-lti 7450 df-plpq 7487 df-mpq 7488 df-enq 7490 df-nqqs 7491 df-plqqs 7492 df-mqqs 7493 df-1nqqs 7494 df-rq 7495 df-ltnqqs 7496 df-enq0 7567 df-nq0 7568 df-0nq0 7569 df-plq0 7570 df-mq0 7571 df-inp 7609 df-iplp 7611 df-iltp 7613 |
| This theorem is referenced by: caucvgprprlemlim 7854 |
| Copyright terms: Public domain | W3C validator |