| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlem2 | Unicode version | ||
| Description: Lemma for caucvgprpr 7895. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprpr.bnd |
|
| caucvgprpr.lim |
|
| caucvgprprlemlim.q |
|
| caucvgprprlemlim.jk |
|
| caucvgprprlemlim.jkq |
|
| Ref | Expression |
|---|---|
| caucvgprprlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprprlemlim.jk |
. . . . 5
| |
| 2 | caucvgprprlemlim.jkq |
. . . . 5
| |
| 3 | 1, 2 | caucvgprprlemk 7866 |
. . . 4
|
| 4 | ltrelpi 7507 |
. . . . . . . . . 10
| |
| 5 | 4 | brel 4770 |
. . . . . . . . 9
|
| 6 | 1, 5 | syl 14 |
. . . . . . . 8
|
| 7 | 6 | simprd 114 |
. . . . . . 7
|
| 8 | nnnq 7605 |
. . . . . . . 8
| |
| 9 | recclnq 7575 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
|
| 11 | 7, 10 | syl 14 |
. . . . . 6
|
| 12 | nqprlu 7730 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | caucvgprprlemlim.q |
. . . . 5
| |
| 15 | caucvgprpr.f |
. . . . . 6
| |
| 16 | 15, 7 | ffvelcdmd 5770 |
. . . . 5
|
| 17 | ltaprg 7802 |
. . . . 5
| |
| 18 | 13, 14, 16, 17 | syl3anc 1271 |
. . . 4
|
| 19 | 3, 18 | mpbid 147 |
. . 3
|
| 20 | addclpr 7720 |
. . . . 5
| |
| 21 | 16, 13, 20 | syl2anc 411 |
. . . 4
|
| 22 | addclpr 7720 |
. . . . 5
| |
| 23 | 16, 14, 22 | syl2anc 411 |
. . . 4
|
| 24 | ltdfpr 7689 |
. . . 4
| |
| 25 | 21, 23, 24 | syl2anc 411 |
. . 3
|
| 26 | 19, 25 | mpbid 147 |
. 2
|
| 27 | simprl 529 |
. . . 4
| |
| 28 | 7 | adantr 276 |
. . . . . 6
|
| 29 | simprrl 539 |
. . . . . . . 8
| |
| 30 | breq1 4085 |
. . . . . . . . . . . 12
| |
| 31 | 30 | cbvabv 2354 |
. . . . . . . . . . 11
|
| 32 | breq2 4086 |
. . . . . . . . . . . 12
| |
| 33 | 32 | cbvabv 2354 |
. . . . . . . . . . 11
|
| 34 | 31, 33 | opeq12i 3861 |
. . . . . . . . . 10
|
| 35 | 34 | oveq2i 6011 |
. . . . . . . . 9
|
| 36 | 35 | fveq2i 5629 |
. . . . . . . 8
|
| 37 | 29, 36 | eleqtrdi 2322 |
. . . . . . 7
|
| 38 | nqprlu 7730 |
. . . . . . . . . . 11
| |
| 39 | 11, 38 | syl 14 |
. . . . . . . . . 10
|
| 40 | addclpr 7720 |
. . . . . . . . . 10
| |
| 41 | 16, 39, 40 | syl2anc 411 |
. . . . . . . . 9
|
| 42 | 41 | adantr 276 |
. . . . . . . 8
|
| 43 | nqpru 7735 |
. . . . . . . 8
| |
| 44 | 27, 42, 43 | syl2anc 411 |
. . . . . . 7
|
| 45 | 37, 44 | mpbid 147 |
. . . . . 6
|
| 46 | fveq2 5626 |
. . . . . . . . 9
| |
| 47 | opeq1 3856 |
. . . . . . . . . . . . . 14
| |
| 48 | 47 | eceq1d 6714 |
. . . . . . . . . . . . 13
|
| 49 | 48 | fveq2d 5630 |
. . . . . . . . . . . 12
|
| 50 | 49 | breq2d 4094 |
. . . . . . . . . . 11
|
| 51 | 50 | abbidv 2347 |
. . . . . . . . . 10
|
| 52 | 49 | breq1d 4092 |
. . . . . . . . . . 11
|
| 53 | 52 | abbidv 2347 |
. . . . . . . . . 10
|
| 54 | 51, 53 | opeq12d 3864 |
. . . . . . . . 9
|
| 55 | 46, 54 | oveq12d 6018 |
. . . . . . . 8
|
| 56 | 55 | breq1d 4092 |
. . . . . . 7
|
| 57 | 56 | rspcev 2907 |
. . . . . 6
|
| 58 | 28, 45, 57 | syl2anc 411 |
. . . . 5
|
| 59 | breq2 4086 |
. . . . . . . . . 10
| |
| 60 | 59 | abbidv 2347 |
. . . . . . . . 9
|
| 61 | breq1 4085 |
. . . . . . . . . 10
| |
| 62 | 61 | abbidv 2347 |
. . . . . . . . 9
|
| 63 | 60, 62 | opeq12d 3864 |
. . . . . . . 8
|
| 64 | 63 | breq2d 4094 |
. . . . . . 7
|
| 65 | 64 | rexbidv 2531 |
. . . . . 6
|
| 66 | caucvgprpr.lim |
. . . . . . . 8
| |
| 67 | 66 | fveq2i 5629 |
. . . . . . 7
|
| 68 | nqex 7546 |
. . . . . . . . 9
| |
| 69 | 68 | rabex 4227 |
. . . . . . . 8
|
| 70 | 68 | rabex 4227 |
. . . . . . . 8
|
| 71 | 69, 70 | op2nd 6291 |
. . . . . . 7
|
| 72 | 67, 71 | eqtri 2250 |
. . . . . 6
|
| 73 | 65, 72 | elrab2 2962 |
. . . . 5
|
| 74 | 27, 58, 73 | sylanbrc 417 |
. . . 4
|
| 75 | simprrr 540 |
. . . 4
| |
| 76 | rspe 2579 |
. . . 4
| |
| 77 | 27, 74, 75, 76 | syl12anc 1269 |
. . 3
|
| 78 | caucvgprpr.cau |
. . . . . 6
| |
| 79 | caucvgprpr.bnd |
. . . . . 6
| |
| 80 | 15, 78, 79, 66 | caucvgprprlemcl 7887 |
. . . . 5
|
| 81 | 80 | adantr 276 |
. . . 4
|
| 82 | 23 | adantr 276 |
. . . 4
|
| 83 | ltdfpr 7689 |
. . . 4
| |
| 84 | 81, 82, 83 | syl2anc 411 |
. . 3
|
| 85 | 77, 84 | mpbird 167 |
. 2
|
| 86 | 26, 85 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-iplp 7651 df-iltp 7653 |
| This theorem is referenced by: caucvgprprlemlim 7894 |
| Copyright terms: Public domain | W3C validator |