ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem2 Unicode version

Theorem caucvgprlem2 7389
Description: Lemma for caucvgpr 7391. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
caucvgprlemlim.q  |-  ( ph  ->  Q  e.  Q. )
caucvgprlemlim.jk  |-  ( ph  ->  J  <N  K )
caucvgprlemlim.jkq  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
Assertion
Ref Expression
caucvgprlem2  |-  ( ph  ->  L  <P  <. { l  |  l  <Q  (
( F `  K
)  +Q  Q ) } ,  { u  |  ( ( F `
 K )  +Q  Q )  <Q  u } >. )
Distinct variable groups:    A, j    j, F, u, l    n, F, k    j, K, u, l    j, L, k    Q, l, u    j, l   
j, k    k, n
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    Q( j, k, n)    J( u, j, k, n, l)    K( k, n)    L( u, n, l)

Proof of Theorem caucvgprlem2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 caucvgprlemlim.jk . . . . 5  |-  ( ph  ->  J  <N  K )
2 caucvgprlemlim.jkq . . . . 5  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )
31, 2caucvgprlemk 7374 . . . 4  |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
4 caucvgpr.f . . . . 5  |-  ( ph  ->  F : N. --> Q. )
5 ltrelpi 7033 . . . . . . . 8  |-  <N  C_  ( N.  X.  N. )
65brel 4529 . . . . . . 7  |-  ( J 
<N  K  ->  ( J  e.  N.  /\  K  e.  N. ) )
71, 6syl 14 . . . . . 6  |-  ( ph  ->  ( J  e.  N.  /\  K  e.  N. )
)
87simprd 113 . . . . 5  |-  ( ph  ->  K  e.  N. )
94, 8ffvelrnd 5488 . . . 4  |-  ( ph  ->  ( F `  K
)  e.  Q. )
10 ltanqi 7111 . . . 4  |-  ( ( ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q  /\  ( F `  K )  e.  Q. )  -> 
( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )
113, 9, 10syl2anc 406 . . 3  |-  ( ph  ->  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q ) )
12 ltbtwnnqq 7124 . . 3  |-  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 K )  +Q  Q )  <->  E. x  e.  Q.  ( ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) )
1311, 12sylib 121 . 2  |-  ( ph  ->  E. x  e.  Q.  ( ( ( F `
 K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  x  /\  x  <Q  (
( F `  K
)  +Q  Q ) ) )
14 simprl 501 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  x  e.  Q. )
158adantr 272 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  K  e.  N. )
16 simprrl 509 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  ( ( F `
 K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  x )
17 fveq2 5353 . . . . . . . . 9  |-  ( j  =  K  ->  ( F `  j )  =  ( F `  K ) )
18 opeq1 3652 . . . . . . . . . . 11  |-  ( j  =  K  ->  <. j ,  1o >.  =  <. K ,  1o >. )
1918eceq1d 6395 . . . . . . . . . 10  |-  ( j  =  K  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. K ,  1o >. ]  ~Q  )
2019fveq2d 5357 . . . . . . . . 9  |-  ( j  =  K  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )
2117, 20oveq12d 5724 . . . . . . . 8  |-  ( j  =  K  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) )
2221breq1d 3885 . . . . . . 7  |-  ( j  =  K  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  x  <->  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  x ) )
2322rspcev 2744 . . . . . 6  |-  ( ( K  e.  N.  /\  ( ( F `  K )  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  x )
2415, 16, 23syl2anc 406 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  x )
25 breq2 3879 . . . . . . 7  |-  ( u  =  x  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  x ) )
2625rexbidv 2397 . . . . . 6  |-  ( u  =  x  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  x ) )
27 caucvgpr.lim . . . . . . . 8  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
2827fveq2i 5356 . . . . . . 7  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
29 nqex 7072 . . . . . . . . 9  |-  Q.  e.  _V
3029rabex 4012 . . . . . . . 8  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
3129rabex 4012 . . . . . . . 8  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
3230, 31op2nd 5976 . . . . . . 7  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
3328, 32eqtri 2120 . . . . . 6  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
3426, 33elrab2 2796 . . . . 5  |-  ( x  e.  ( 2nd `  L
)  <->  ( x  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  x ) )
3514, 24, 34sylanbrc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  x  e.  ( 2nd `  L ) )
36 simprrr 510 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  x  <Q  (
( F `  K
)  +Q  Q ) )
37 vex 2644 . . . . . . 7  |-  x  e. 
_V
38 breq1 3878 . . . . . . 7  |-  ( l  =  x  ->  (
l  <Q  ( ( F `
 K )  +Q  Q )  <->  x  <Q  ( ( F `  K
)  +Q  Q ) ) )
3937, 38elab 2782 . . . . . 6  |-  ( x  e.  { l  |  l  <Q  ( ( F `  K )  +Q  Q ) }  <->  x  <Q  ( ( F `  K
)  +Q  Q ) )
4036, 39sylibr 133 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  x  e.  {
l  |  l  <Q 
( ( F `  K )  +Q  Q
) } )
41 ltnqex 7258 . . . . . 6  |-  { l  |  l  <Q  (
( F `  K
)  +Q  Q ) }  e.  _V
42 gtnqex 7259 . . . . . 6  |-  { u  |  ( ( F `
 K )  +Q  Q )  <Q  u }  e.  _V
4341, 42op1st 5975 . . . . 5  |-  ( 1st `  <. { l  |  l  <Q  ( ( F `  K )  +Q  Q ) } ,  { u  |  (
( F `  K
)  +Q  Q ) 
<Q  u } >. )  =  { l  |  l 
<Q  ( ( F `  K )  +Q  Q
) }
4440, 43syl6eleqr 2193 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  x  e.  ( 1st `  <. { l  |  l  <Q  (
( F `  K
)  +Q  Q ) } ,  { u  |  ( ( F `
 K )  +Q  Q )  <Q  u } >. ) )
45 rspe 2440 . . . 4  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  L )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  K )  +Q  Q
) } ,  {
u  |  ( ( F `  K )  +Q  Q )  <Q  u } >. ) ) )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  L )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  K )  +Q  Q
) } ,  {
u  |  ( ( F `  K )  +Q  Q )  <Q  u } >. ) ) )
4614, 35, 44, 45syl12anc 1182 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  L )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  K )  +Q  Q
) } ,  {
u  |  ( ( F `  K )  +Q  Q )  <Q  u } >. ) ) )
47 caucvgpr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
48 caucvgpr.bnd . . . . . 6  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
494, 47, 48, 27caucvgprlemcl 7385 . . . . 5  |-  ( ph  ->  L  e.  P. )
5049adantr 272 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  L  e.  P. )
51 caucvgprlemlim.q . . . . . . 7  |-  ( ph  ->  Q  e.  Q. )
52 addclnq 7084 . . . . . . 7  |-  ( ( ( F `  K
)  e.  Q.  /\  Q  e.  Q. )  ->  ( ( F `  K )  +Q  Q
)  e.  Q. )
539, 51, 52syl2anc 406 . . . . . 6  |-  ( ph  ->  ( ( F `  K )  +Q  Q
)  e.  Q. )
54 nqprlu 7256 . . . . . 6  |-  ( ( ( F `  K
)  +Q  Q )  e.  Q.  ->  <. { l  |  l  <Q  (
( F `  K
)  +Q  Q ) } ,  { u  |  ( ( F `
 K )  +Q  Q )  <Q  u } >.  e.  P. )
5553, 54syl 14 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( ( F `  K )  +Q  Q
) } ,  {
u  |  ( ( F `  K )  +Q  Q )  <Q  u } >.  e.  P. )
5655adantr 272 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  <. { l  |  l  <Q  ( ( F `  K )  +Q  Q ) } ,  { u  |  (
( F `  K
)  +Q  Q ) 
<Q  u } >.  e.  P. )
57 ltdfpr 7215 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( ( F `  K )  +Q  Q
) } ,  {
u  |  ( ( F `  K )  +Q  Q )  <Q  u } >.  e.  P. )  ->  ( L  <P  <. { l  |  l 
<Q  ( ( F `  K )  +Q  Q
) } ,  {
u  |  ( ( F `  K )  +Q  Q )  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  L )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  K )  +Q  Q
) } ,  {
u  |  ( ( F `  K )  +Q  Q )  <Q  u } >. ) ) ) )
5850, 56, 57syl2anc 406 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  ( L  <P  <. { l  |  l 
<Q  ( ( F `  K )  +Q  Q
) } ,  {
u  |  ( ( F `  K )  +Q  Q )  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  L )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  K )  +Q  Q
) } ,  {
u  |  ( ( F `  K )  +Q  Q )  <Q  u } >. ) ) ) )
5946, 58mpbird 166 . 2  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  K
)  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
)  <Q  x  /\  x  <Q  ( ( F `  K )  +Q  Q
) ) ) )  ->  L  <P  <. { l  |  l  <Q  (
( F `  K
)  +Q  Q ) } ,  { u  |  ( ( F `
 K )  +Q  Q )  <Q  u } >. )
6013, 59rexlimddv 2513 1  |-  ( ph  ->  L  <P  <. { l  |  l  <Q  (
( F `  K
)  +Q  Q ) } ,  { u  |  ( ( F `
 K )  +Q  Q )  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448   {cab 2086   A.wral 2375   E.wrex 2376   {crab 2379   <.cop 3477   class class class wbr 3875   -->wf 5055   ` cfv 5059  (class class class)co 5706   1stc1st 5967   2ndc2nd 5968   1oc1o 6236   [cec 6357   N.cnpi 6981    <N clti 6984    ~Q ceq 6988   Q.cnq 6989    +Q cplq 6991   *Qcrq 6993    <Q cltq 6994   P.cnp 7000    <P cltp 7004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-inp 7175  df-iltp 7179
This theorem is referenced by:  caucvgprlemlim  7390
  Copyright terms: Public domain W3C validator