| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprlem2 | Unicode version | ||
| Description: Lemma for caucvgpr 7766. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| caucvgpr.f |
|
| caucvgpr.cau |
|
| caucvgpr.bnd |
|
| caucvgpr.lim |
|
| caucvgprlemlim.q |
|
| caucvgprlemlim.jk |
|
| caucvgprlemlim.jkq |
|
| Ref | Expression |
|---|---|
| caucvgprlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprlemlim.jk |
. . . . 5
| |
| 2 | caucvgprlemlim.jkq |
. . . . 5
| |
| 3 | 1, 2 | caucvgprlemk 7749 |
. . . 4
|
| 4 | caucvgpr.f |
. . . . 5
| |
| 5 | ltrelpi 7408 |
. . . . . . . 8
| |
| 6 | 5 | brel 4716 |
. . . . . . 7
|
| 7 | 1, 6 | syl 14 |
. . . . . 6
|
| 8 | 7 | simprd 114 |
. . . . 5
|
| 9 | 4, 8 | ffvelcdmd 5701 |
. . . 4
|
| 10 | ltanqi 7486 |
. . . 4
| |
| 11 | 3, 9, 10 | syl2anc 411 |
. . 3
|
| 12 | ltbtwnnqq 7499 |
. . 3
| |
| 13 | 11, 12 | sylib 122 |
. 2
|
| 14 | simprl 529 |
. . . 4
| |
| 15 | 8 | adantr 276 |
. . . . . 6
|
| 16 | simprrl 539 |
. . . . . 6
| |
| 17 | fveq2 5561 |
. . . . . . . . 9
| |
| 18 | opeq1 3809 |
. . . . . . . . . . 11
| |
| 19 | 18 | eceq1d 6637 |
. . . . . . . . . 10
|
| 20 | 19 | fveq2d 5565 |
. . . . . . . . 9
|
| 21 | 17, 20 | oveq12d 5943 |
. . . . . . . 8
|
| 22 | 21 | breq1d 4044 |
. . . . . . 7
|
| 23 | 22 | rspcev 2868 |
. . . . . 6
|
| 24 | 15, 16, 23 | syl2anc 411 |
. . . . 5
|
| 25 | breq2 4038 |
. . . . . . 7
| |
| 26 | 25 | rexbidv 2498 |
. . . . . 6
|
| 27 | caucvgpr.lim |
. . . . . . . 8
| |
| 28 | 27 | fveq2i 5564 |
. . . . . . 7
|
| 29 | nqex 7447 |
. . . . . . . . 9
| |
| 30 | 29 | rabex 4178 |
. . . . . . . 8
|
| 31 | 29 | rabex 4178 |
. . . . . . . 8
|
| 32 | 30, 31 | op2nd 6214 |
. . . . . . 7
|
| 33 | 28, 32 | eqtri 2217 |
. . . . . 6
|
| 34 | 26, 33 | elrab2 2923 |
. . . . 5
|
| 35 | 14, 24, 34 | sylanbrc 417 |
. . . 4
|
| 36 | simprrr 540 |
. . . . . 6
| |
| 37 | vex 2766 |
. . . . . . 7
| |
| 38 | breq1 4037 |
. . . . . . 7
| |
| 39 | 37, 38 | elab 2908 |
. . . . . 6
|
| 40 | 36, 39 | sylibr 134 |
. . . . 5
|
| 41 | ltnqex 7633 |
. . . . . 6
| |
| 42 | gtnqex 7634 |
. . . . . 6
| |
| 43 | 41, 42 | op1st 6213 |
. . . . 5
|
| 44 | 40, 43 | eleqtrrdi 2290 |
. . . 4
|
| 45 | rspe 2546 |
. . . 4
| |
| 46 | 14, 35, 44, 45 | syl12anc 1247 |
. . 3
|
| 47 | caucvgpr.cau |
. . . . . 6
| |
| 48 | caucvgpr.bnd |
. . . . . 6
| |
| 49 | 4, 47, 48, 27 | caucvgprlemcl 7760 |
. . . . 5
|
| 50 | 49 | adantr 276 |
. . . 4
|
| 51 | caucvgprlemlim.q |
. . . . . . 7
| |
| 52 | addclnq 7459 |
. . . . . . 7
| |
| 53 | 9, 51, 52 | syl2anc 411 |
. . . . . 6
|
| 54 | nqprlu 7631 |
. . . . . 6
| |
| 55 | 53, 54 | syl 14 |
. . . . 5
|
| 56 | 55 | adantr 276 |
. . . 4
|
| 57 | ltdfpr 7590 |
. . . 4
| |
| 58 | 50, 56, 57 | syl2anc 411 |
. . 3
|
| 59 | 46, 58 | mpbird 167 |
. 2
|
| 60 | 13, 59 | rexlimddv 2619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-inp 7550 df-iltp 7554 |
| This theorem is referenced by: caucvgprlemlim 7765 |
| Copyright terms: Public domain | W3C validator |