ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprab4 Unicode version

Theorem oprab4 5893
Description: Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010.)
Assertion
Ref Expression
oprab4  |-  { <. <.
x ,  y >. ,  z >.  |  (
<. x ,  y >.  e.  ( A  X.  B
)  /\  ph ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    A( x, y, z)    B( x, y, z)

Proof of Theorem oprab4
StepHypRef Expression
1 opelxp 4617 . . 3  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
21anbi1i 454 . 2  |-  ( (
<. x ,  y >.  e.  ( A  X.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) )
32oprabbii 5877 1  |-  { <. <.
x ,  y >. ,  z >.  |  (
<. x ,  y >.  e.  ( A  X.  B
)  /\  ph ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335    e. wcel 2128   <.cop 3563    X. cxp 4585   {coprab 5826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-opab 4027  df-xp 4593  df-oprab 5829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator