ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprab4 Unicode version

Theorem oprab4 5948
Description: Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010.)
Assertion
Ref Expression
oprab4  |-  { <. <.
x ,  y >. ,  z >.  |  (
<. x ,  y >.  e.  ( A  X.  B
)  /\  ph ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    A( x, y, z)    B( x, y, z)

Proof of Theorem oprab4
StepHypRef Expression
1 opelxp 4658 . . 3  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
21anbi1i 458 . 2  |-  ( (
<. x ,  y >.  e.  ( A  X.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) )
32oprabbii 5932 1  |-  { <. <.
x ,  y >. ,  z >.  |  (
<. x ,  y >.  e.  ( A  X.  B
)  /\  ph ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148   <.cop 3597    X. cxp 4626   {coprab 5878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634  df-oprab 5881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator