ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprab4 Unicode version

Theorem oprab4 5913
Description: Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010.)
Assertion
Ref Expression
oprab4  |-  { <. <.
x ,  y >. ,  z >.  |  (
<. x ,  y >.  e.  ( A  X.  B
)  /\  ph ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    A( x, y, z)    B( x, y, z)

Proof of Theorem oprab4
StepHypRef Expression
1 opelxp 4634 . . 3  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
21anbi1i 454 . 2  |-  ( (
<. x ,  y >.  e.  ( A  X.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) )
32oprabbii 5897 1  |-  { <. <.
x ,  y >. ,  z >.  |  (
<. x ,  y >.  e.  ( A  X.  B
)  /\  ph ) }  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   <.cop 3579    X. cxp 4602   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610  df-oprab 5846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator