![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simprll | Unicode version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simprll |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ad2antrl 479 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: imain 5161 fcof1 5636 mpo0 5793 eroveu 6472 sbthlemi6 6800 sbthlemi8 6802 addcmpblnq 7117 mulcmpblnq 7118 ordpipqqs 7124 addcmpblnq0 7193 mulcmpblnq0 7194 nnnq0lem1 7196 prarloclemcalc 7252 addlocpr 7286 distrlem4prl 7334 distrlem4pru 7335 ltpopr 7345 addcmpblnr 7476 mulcmpblnrlemg 7477 mulcmpblnr 7478 prsrlem1 7479 ltsrprg 7484 apreap 8261 apreim 8277 divdivdivap 8380 divmuleqap 8384 divadddivap 8394 divsubdivap 8395 ledivdiv 8552 lediv12a 8556 exbtwnz 9915 seq3caopr 10143 leexp2r 10234 zfz1iso 10471 recvguniq 10653 rsqrmo 10685 summodclem2 11037 qredeu 11618 pw2dvdseu 11685 epttop 12096 txdis1cn 12283 metequiv2 12479 mulc1cncf 12556 cncfmptc 12562 cncfmptid 12563 addccncf 12566 negcncf 12568 |
Copyright terms: Public domain | W3C validator |