ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropd2 Unicode version

Theorem grpsubpropd2 13237
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubpropd2.1  |-  ( ph  ->  B  =  ( Base `  G ) )
grpsubpropd2.2  |-  ( ph  ->  B  =  ( Base `  H ) )
grpsubpropd2.3  |-  ( ph  ->  G  e.  Grp )
grpsubpropd2.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
Assertion
Ref Expression
grpsubpropd2  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )
Distinct variable groups:    x, y, B   
x, G, y    x, H, y    ph, x, y

Proof of Theorem grpsubpropd2
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ph )
2 simp2 1000 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  a  e.  (
Base `  G )
)
3 grpsubpropd2.1 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  G ) )
433ad2ant1 1020 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  B  =  (
Base `  G )
)
52, 4eleqtrrd 2276 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  a  e.  B
)
6 grpsubpropd2.3 . . . . . . . . 9  |-  ( ph  ->  G  e.  Grp )
763ad2ant1 1020 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  G  e.  Grp )
8 simp3 1001 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  b  e.  (
Base `  G )
)
9 eqid 2196 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
10 eqid 2196 . . . . . . . . 9  |-  ( invg `  G )  =  ( invg `  G )
119, 10grpinvcl 13180 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  b  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  b
)  e.  ( Base `  G ) )
127, 8, 11syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( ( invg `  G ) `
 b )  e.  ( Base `  G
) )
1312, 4eleqtrrd 2276 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( ( invg `  G ) `
 b )  e.  B )
14 grpsubpropd2.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
1514oveqrspc2v 5949 . . . . . 6  |-  ( (
ph  /\  ( a  e.  B  /\  (
( invg `  G ) `  b
)  e.  B ) )  ->  ( a
( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  G ) `
 b ) ) )
161, 5, 13, 15syl12anc 1247 . . . . 5  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  G ) `
 b ) ) )
17 grpsubpropd2.2 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  H ) )
18 eqid 2196 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
199, 18grpidcl 13161 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
206, 19syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( 0g `  G
)  e.  ( Base `  G ) )
2120, 3eleqtrrd 2276 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  G
)  e.  B )
2217, 21basmexd 12738 . . . . . . . . 9  |-  ( ph  ->  H  e.  _V )
233, 17, 6, 22, 14grpinvpropdg 13207 . . . . . . . 8  |-  ( ph  ->  ( invg `  G )  =  ( invg `  H
) )
2423fveq1d 5560 . . . . . . 7  |-  ( ph  ->  ( ( invg `  G ) `  b
)  =  ( ( invg `  H
) `  b )
)
2524oveq2d 5938 . . . . . 6  |-  ( ph  ->  ( a ( +g  `  H ) ( ( invg `  G
) `  b )
)  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
26253ad2ant1 1020 . . . . 5  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( a ( +g  `  H ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
2716, 26eqtrd 2229 . . . 4  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
2827mpoeq3dva 5986 . . 3  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) )  =  ( a  e.  ( Base `  G
) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
293, 17eqtr3d 2231 . . . 4  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
30 mpoeq12 5982 . . . 4  |-  ( ( ( Base `  G
)  =  ( Base `  H )  /\  ( Base `  G )  =  ( Base `  H
) )  ->  (
a  e.  ( Base `  G ) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) )  =  ( a  e.  (
Base `  H ) ,  b  e.  ( Base `  H )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) ) )
3129, 29, 30syl2anc 411 . . 3  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
3228, 31eqtrd 2229 . 2  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) )  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
33 eqid 2196 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
34 eqid 2196 . . . 4  |-  ( -g `  G )  =  (
-g `  G )
359, 33, 10, 34grpsubfvalg 13177 . . 3  |-  ( G  e.  Grp  ->  ( -g `  G )  =  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) ) )
366, 35syl 14 . 2  |-  ( ph  ->  ( -g `  G
)  =  ( a  e.  ( Base `  G
) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) ) ) )
37 eqid 2196 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
38 eqid 2196 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
39 eqid 2196 . . . 4  |-  ( invg `  H )  =  ( invg `  H )
40 eqid 2196 . . . 4  |-  ( -g `  H )  =  (
-g `  H )
4137, 38, 39, 40grpsubfvalg 13177 . . 3  |-  ( H  e.  _V  ->  ( -g `  H )  =  ( a  e.  (
Base `  H ) ,  b  e.  ( Base `  H )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) ) )
4222, 41syl 14 . 2  |-  ( ph  ->  ( -g `  H
)  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
4332, 36, 423eqtr4d 2239 1  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132   invgcminusg 13133   -gcsg 13134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator