ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropd2 Unicode version

Theorem grpsubpropd2 13633
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubpropd2.1  |-  ( ph  ->  B  =  ( Base `  G ) )
grpsubpropd2.2  |-  ( ph  ->  B  =  ( Base `  H ) )
grpsubpropd2.3  |-  ( ph  ->  G  e.  Grp )
grpsubpropd2.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
Assertion
Ref Expression
grpsubpropd2  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )
Distinct variable groups:    x, y, B   
x, G, y    x, H, y    ph, x, y

Proof of Theorem grpsubpropd2
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1021 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ph )
2 simp2 1022 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  a  e.  (
Base `  G )
)
3 grpsubpropd2.1 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  G ) )
433ad2ant1 1042 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  B  =  (
Base `  G )
)
52, 4eleqtrrd 2309 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  a  e.  B
)
6 grpsubpropd2.3 . . . . . . . . 9  |-  ( ph  ->  G  e.  Grp )
763ad2ant1 1042 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  G  e.  Grp )
8 simp3 1023 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  b  e.  (
Base `  G )
)
9 eqid 2229 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
10 eqid 2229 . . . . . . . . 9  |-  ( invg `  G )  =  ( invg `  G )
119, 10grpinvcl 13576 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  b  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  b
)  e.  ( Base `  G ) )
127, 8, 11syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( ( invg `  G ) `
 b )  e.  ( Base `  G
) )
1312, 4eleqtrrd 2309 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( ( invg `  G ) `
 b )  e.  B )
14 grpsubpropd2.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
1514oveqrspc2v 6027 . . . . . 6  |-  ( (
ph  /\  ( a  e.  B  /\  (
( invg `  G ) `  b
)  e.  B ) )  ->  ( a
( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  G ) `
 b ) ) )
161, 5, 13, 15syl12anc 1269 . . . . 5  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  G ) `
 b ) ) )
17 grpsubpropd2.2 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  H ) )
18 eqid 2229 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
199, 18grpidcl 13557 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
206, 19syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( 0g `  G
)  e.  ( Base `  G ) )
2120, 3eleqtrrd 2309 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  G
)  e.  B )
2217, 21basmexd 13088 . . . . . . . . 9  |-  ( ph  ->  H  e.  _V )
233, 17, 6, 22, 14grpinvpropdg 13603 . . . . . . . 8  |-  ( ph  ->  ( invg `  G )  =  ( invg `  H
) )
2423fveq1d 5628 . . . . . . 7  |-  ( ph  ->  ( ( invg `  G ) `  b
)  =  ( ( invg `  H
) `  b )
)
2524oveq2d 6016 . . . . . 6  |-  ( ph  ->  ( a ( +g  `  H ) ( ( invg `  G
) `  b )
)  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
26253ad2ant1 1042 . . . . 5  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( a ( +g  `  H ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
2716, 26eqtrd 2262 . . . 4  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
2827mpoeq3dva 6067 . . 3  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) )  =  ( a  e.  ( Base `  G
) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
293, 17eqtr3d 2264 . . . 4  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
30 mpoeq12 6063 . . . 4  |-  ( ( ( Base `  G
)  =  ( Base `  H )  /\  ( Base `  G )  =  ( Base `  H
) )  ->  (
a  e.  ( Base `  G ) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) )  =  ( a  e.  (
Base `  H ) ,  b  e.  ( Base `  H )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) ) )
3129, 29, 30syl2anc 411 . . 3  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
3228, 31eqtrd 2262 . 2  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) )  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
33 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
34 eqid 2229 . . . 4  |-  ( -g `  G )  =  (
-g `  G )
359, 33, 10, 34grpsubfvalg 13573 . . 3  |-  ( G  e.  Grp  ->  ( -g `  G )  =  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) ) )
366, 35syl 14 . 2  |-  ( ph  ->  ( -g `  G
)  =  ( a  e.  ( Base `  G
) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) ) ) )
37 eqid 2229 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
38 eqid 2229 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
39 eqid 2229 . . . 4  |-  ( invg `  H )  =  ( invg `  H )
40 eqid 2229 . . . 4  |-  ( -g `  H )  =  (
-g `  H )
4137, 38, 39, 40grpsubfvalg 13573 . . 3  |-  ( H  e.  _V  ->  ( -g `  H )  =  ( a  e.  (
Base `  H ) ,  b  e.  ( Base `  H )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) ) )
4222, 41syl 14 . 2  |-  ( ph  ->  ( -g `  H
)  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
4332, 36, 423eqtr4d 2272 1  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   ` cfv 5317  (class class class)co 6000    e. cmpo 6002   Basecbs 13027   +g cplusg 13105   0gc0g 13284   Grpcgrp 13528   invgcminusg 13529   -gcsg 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-sbg 13533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator