Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpsubpropd2 | Unicode version |
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
grpsubpropd2.1 | |
grpsubpropd2.2 | |
grpsubpropd2.3 | |
grpsubpropd2.4 |
Ref | Expression |
---|---|
grpsubpropd2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 993 | . . . . . 6 | |
2 | simp2 994 | . . . . . . 7 | |
3 | grpsubpropd2.1 | . . . . . . . 8 | |
4 | 3 | 3ad2ant1 1014 | . . . . . . 7 |
5 | 2, 4 | eleqtrrd 2251 | . . . . . 6 |
6 | grpsubpropd2.3 | . . . . . . . . 9 | |
7 | 6 | 3ad2ant1 1014 | . . . . . . . 8 |
8 | simp3 995 | . . . . . . . 8 | |
9 | eqid 2171 | . . . . . . . . 9 | |
10 | eqid 2171 | . . . . . . . . 9 | |
11 | 9, 10 | grpinvcl 12773 | . . . . . . . 8 |
12 | 7, 8, 11 | syl2anc 409 | . . . . . . 7 |
13 | 12, 4 | eleqtrrd 2251 | . . . . . 6 |
14 | grpsubpropd2.4 | . . . . . . 7 | |
15 | 14 | oveqrspc2v 5884 | . . . . . 6 |
16 | 1, 5, 13, 15 | syl12anc 1232 | . . . . 5 |
17 | grpsubpropd2.2 | . . . . . . . . 9 | |
18 | eqid 2171 | . . . . . . . . . . . . 13 | |
19 | 9, 18 | grpidcl 12756 | . . . . . . . . . . . 12 |
20 | 6, 19 | syl 14 | . . . . . . . . . . 11 |
21 | 20, 3 | eleqtrrd 2251 | . . . . . . . . . 10 |
22 | 17, 21 | basmexd 12479 | . . . . . . . . 9 |
23 | 3, 17, 6, 22, 14 | grpinvpropdg 12796 | . . . . . . . 8 |
24 | 23 | fveq1d 5501 | . . . . . . 7 |
25 | 24 | oveq2d 5873 | . . . . . 6 |
26 | 25 | 3ad2ant1 1014 | . . . . 5 |
27 | 16, 26 | eqtrd 2204 | . . . 4 |
28 | 27 | mpoeq3dva 5921 | . . 3 |
29 | 3, 17 | eqtr3d 2206 | . . . 4 |
30 | mpoeq12 5917 | . . . 4 | |
31 | 29, 29, 30 | syl2anc 409 | . . 3 |
32 | 28, 31 | eqtrd 2204 | . 2 |
33 | eqid 2171 | . . . 4 | |
34 | eqid 2171 | . . . 4 | |
35 | 9, 33, 10, 34 | grpsubfvalg 12770 | . . 3 |
36 | 6, 35 | syl 14 | . 2 |
37 | eqid 2171 | . . . 4 | |
38 | eqid 2171 | . . . 4 | |
39 | eqid 2171 | . . . 4 | |
40 | eqid 2171 | . . . 4 | |
41 | 37, 38, 39, 40 | grpsubfvalg 12770 | . . 3 |
42 | 22, 41 | syl 14 | . 2 |
43 | 32, 36, 42 | 3eqtr4d 2214 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 974 wceq 1349 wcel 2142 cvv 2731 cfv 5200 (class class class)co 5857 cmpo 5859 cbs 12420 cplusg 12484 c0g 12618 cgrp 12730 cminusg 12731 csg 12732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1st 6123 df-2nd 6124 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-grp 12733 df-minusg 12734 df-sbg 12735 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |