ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropd2 Unicode version

Theorem grpsubpropd2 13180
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubpropd2.1  |-  ( ph  ->  B  =  ( Base `  G ) )
grpsubpropd2.2  |-  ( ph  ->  B  =  ( Base `  H ) )
grpsubpropd2.3  |-  ( ph  ->  G  e.  Grp )
grpsubpropd2.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
Assertion
Ref Expression
grpsubpropd2  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )
Distinct variable groups:    x, y, B   
x, G, y    x, H, y    ph, x, y

Proof of Theorem grpsubpropd2
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ph )
2 simp2 1000 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  a  e.  (
Base `  G )
)
3 grpsubpropd2.1 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  G ) )
433ad2ant1 1020 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  B  =  (
Base `  G )
)
52, 4eleqtrrd 2273 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  a  e.  B
)
6 grpsubpropd2.3 . . . . . . . . 9  |-  ( ph  ->  G  e.  Grp )
763ad2ant1 1020 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  G  e.  Grp )
8 simp3 1001 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  b  e.  (
Base `  G )
)
9 eqid 2193 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
10 eqid 2193 . . . . . . . . 9  |-  ( invg `  G )  =  ( invg `  G )
119, 10grpinvcl 13123 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  b  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  b
)  e.  ( Base `  G ) )
127, 8, 11syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( ( invg `  G ) `
 b )  e.  ( Base `  G
) )
1312, 4eleqtrrd 2273 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( ( invg `  G ) `
 b )  e.  B )
14 grpsubpropd2.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
1514oveqrspc2v 5946 . . . . . 6  |-  ( (
ph  /\  ( a  e.  B  /\  (
( invg `  G ) `  b
)  e.  B ) )  ->  ( a
( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  G ) `
 b ) ) )
161, 5, 13, 15syl12anc 1247 . . . . 5  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  G ) `
 b ) ) )
17 grpsubpropd2.2 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  H ) )
18 eqid 2193 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
199, 18grpidcl 13104 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
206, 19syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( 0g `  G
)  e.  ( Base `  G ) )
2120, 3eleqtrrd 2273 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  G
)  e.  B )
2217, 21basmexd 12681 . . . . . . . . 9  |-  ( ph  ->  H  e.  _V )
233, 17, 6, 22, 14grpinvpropdg 13150 . . . . . . . 8  |-  ( ph  ->  ( invg `  G )  =  ( invg `  H
) )
2423fveq1d 5557 . . . . . . 7  |-  ( ph  ->  ( ( invg `  G ) `  b
)  =  ( ( invg `  H
) `  b )
)
2524oveq2d 5935 . . . . . 6  |-  ( ph  ->  ( a ( +g  `  H ) ( ( invg `  G
) `  b )
)  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
26253ad2ant1 1020 . . . . 5  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( a ( +g  `  H ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
2716, 26eqtrd 2226 . . . 4  |-  ( (
ph  /\  a  e.  ( Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) )  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
2827mpoeq3dva 5983 . . 3  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) )  =  ( a  e.  ( Base `  G
) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
293, 17eqtr3d 2228 . . . 4  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
30 mpoeq12 5979 . . . 4  |-  ( ( ( Base `  G
)  =  ( Base `  H )  /\  ( Base `  G )  =  ( Base `  H
) )  ->  (
a  e.  ( Base `  G ) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) )  =  ( a  e.  (
Base `  H ) ,  b  e.  ( Base `  H )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) ) )
3129, 29, 30syl2anc 411 . . 3  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
3228, 31eqtrd 2226 . 2  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) )  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
33 eqid 2193 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
34 eqid 2193 . . . 4  |-  ( -g `  G )  =  (
-g `  G )
359, 33, 10, 34grpsubfvalg 13120 . . 3  |-  ( G  e.  Grp  ->  ( -g `  G )  =  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) ) )
366, 35syl 14 . 2  |-  ( ph  ->  ( -g `  G
)  =  ( a  e.  ( Base `  G
) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) ) ) )
37 eqid 2193 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
38 eqid 2193 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
39 eqid 2193 . . . 4  |-  ( invg `  H )  =  ( invg `  H )
40 eqid 2193 . . . 4  |-  ( -g `  H )  =  (
-g `  H )
4137, 38, 39, 40grpsubfvalg 13120 . . 3  |-  ( H  e.  _V  ->  ( -g `  H )  =  ( a  e.  (
Base `  H ) ,  b  e.  ( Base `  H )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) ) )
4222, 41syl 14 . 2  |-  ( ph  ->  ( -g `  H
)  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
4332, 36, 423eqtr4d 2236 1  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Grpcgrp 13075   invgcminusg 13076   -gcsg 13077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator