| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubpropd2 | Unicode version | ||
| Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| grpsubpropd2.1 |
|
| grpsubpropd2.2 |
|
| grpsubpropd2.3 |
|
| grpsubpropd2.4 |
|
| Ref | Expression |
|---|---|
| grpsubpropd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. . . . . 6
| |
| 2 | simp2 1000 |
. . . . . . 7
| |
| 3 | grpsubpropd2.1 |
. . . . . . . 8
| |
| 4 | 3 | 3ad2ant1 1020 |
. . . . . . 7
|
| 5 | 2, 4 | eleqtrrd 2284 |
. . . . . 6
|
| 6 | grpsubpropd2.3 |
. . . . . . . . 9
| |
| 7 | 6 | 3ad2ant1 1020 |
. . . . . . . 8
|
| 8 | simp3 1001 |
. . . . . . . 8
| |
| 9 | eqid 2204 |
. . . . . . . . 9
| |
| 10 | eqid 2204 |
. . . . . . . . 9
| |
| 11 | 9, 10 | grpinvcl 13322 |
. . . . . . . 8
|
| 12 | 7, 8, 11 | syl2anc 411 |
. . . . . . 7
|
| 13 | 12, 4 | eleqtrrd 2284 |
. . . . . 6
|
| 14 | grpsubpropd2.4 |
. . . . . . 7
| |
| 15 | 14 | oveqrspc2v 5970 |
. . . . . 6
|
| 16 | 1, 5, 13, 15 | syl12anc 1247 |
. . . . 5
|
| 17 | grpsubpropd2.2 |
. . . . . . . . 9
| |
| 18 | eqid 2204 |
. . . . . . . . . . . . 13
| |
| 19 | 9, 18 | grpidcl 13303 |
. . . . . . . . . . . 12
|
| 20 | 6, 19 | syl 14 |
. . . . . . . . . . 11
|
| 21 | 20, 3 | eleqtrrd 2284 |
. . . . . . . . . 10
|
| 22 | 17, 21 | basmexd 12834 |
. . . . . . . . 9
|
| 23 | 3, 17, 6, 22, 14 | grpinvpropdg 13349 |
. . . . . . . 8
|
| 24 | 23 | fveq1d 5577 |
. . . . . . 7
|
| 25 | 24 | oveq2d 5959 |
. . . . . 6
|
| 26 | 25 | 3ad2ant1 1020 |
. . . . 5
|
| 27 | 16, 26 | eqtrd 2237 |
. . . 4
|
| 28 | 27 | mpoeq3dva 6008 |
. . 3
|
| 29 | 3, 17 | eqtr3d 2239 |
. . . 4
|
| 30 | mpoeq12 6004 |
. . . 4
| |
| 31 | 29, 29, 30 | syl2anc 411 |
. . 3
|
| 32 | 28, 31 | eqtrd 2237 |
. 2
|
| 33 | eqid 2204 |
. . . 4
| |
| 34 | eqid 2204 |
. . . 4
| |
| 35 | 9, 33, 10, 34 | grpsubfvalg 13319 |
. . 3
|
| 36 | 6, 35 | syl 14 |
. 2
|
| 37 | eqid 2204 |
. . . 4
| |
| 38 | eqid 2204 |
. . . 4
| |
| 39 | eqid 2204 |
. . . 4
| |
| 40 | eqid 2204 |
. . . 4
| |
| 41 | 37, 38, 39, 40 | grpsubfvalg 13319 |
. . 3
|
| 42 | 22, 41 | syl 14 |
. 2
|
| 43 | 32, 36, 42 | 3eqtr4d 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-inn 9036 df-2 9094 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 df-sbg 13279 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |