| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubpropd2 | Unicode version | ||
| Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| grpsubpropd2.1 |
|
| grpsubpropd2.2 |
|
| grpsubpropd2.3 |
|
| grpsubpropd2.4 |
|
| Ref | Expression |
|---|---|
| grpsubpropd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . . . . 6
| |
| 2 | simp2 1001 |
. . . . . . 7
| |
| 3 | grpsubpropd2.1 |
. . . . . . . 8
| |
| 4 | 3 | 3ad2ant1 1021 |
. . . . . . 7
|
| 5 | 2, 4 | eleqtrrd 2286 |
. . . . . 6
|
| 6 | grpsubpropd2.3 |
. . . . . . . . 9
| |
| 7 | 6 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 8 | simp3 1002 |
. . . . . . . 8
| |
| 9 | eqid 2206 |
. . . . . . . . 9
| |
| 10 | eqid 2206 |
. . . . . . . . 9
| |
| 11 | 9, 10 | grpinvcl 13465 |
. . . . . . . 8
|
| 12 | 7, 8, 11 | syl2anc 411 |
. . . . . . 7
|
| 13 | 12, 4 | eleqtrrd 2286 |
. . . . . 6
|
| 14 | grpsubpropd2.4 |
. . . . . . 7
| |
| 15 | 14 | oveqrspc2v 5989 |
. . . . . 6
|
| 16 | 1, 5, 13, 15 | syl12anc 1248 |
. . . . 5
|
| 17 | grpsubpropd2.2 |
. . . . . . . . 9
| |
| 18 | eqid 2206 |
. . . . . . . . . . . . 13
| |
| 19 | 9, 18 | grpidcl 13446 |
. . . . . . . . . . . 12
|
| 20 | 6, 19 | syl 14 |
. . . . . . . . . . 11
|
| 21 | 20, 3 | eleqtrrd 2286 |
. . . . . . . . . 10
|
| 22 | 17, 21 | basmexd 12977 |
. . . . . . . . 9
|
| 23 | 3, 17, 6, 22, 14 | grpinvpropdg 13492 |
. . . . . . . 8
|
| 24 | 23 | fveq1d 5596 |
. . . . . . 7
|
| 25 | 24 | oveq2d 5978 |
. . . . . 6
|
| 26 | 25 | 3ad2ant1 1021 |
. . . . 5
|
| 27 | 16, 26 | eqtrd 2239 |
. . . 4
|
| 28 | 27 | mpoeq3dva 6027 |
. . 3
|
| 29 | 3, 17 | eqtr3d 2241 |
. . . 4
|
| 30 | mpoeq12 6023 |
. . . 4
| |
| 31 | 29, 29, 30 | syl2anc 411 |
. . 3
|
| 32 | 28, 31 | eqtrd 2239 |
. 2
|
| 33 | eqid 2206 |
. . . 4
| |
| 34 | eqid 2206 |
. . . 4
| |
| 35 | 9, 33, 10, 34 | grpsubfvalg 13462 |
. . 3
|
| 36 | 6, 35 | syl 14 |
. 2
|
| 37 | eqid 2206 |
. . . 4
| |
| 38 | eqid 2206 |
. . . 4
| |
| 39 | eqid 2206 |
. . . 4
| |
| 40 | eqid 2206 |
. . . 4
| |
| 41 | 37, 38, 39, 40 | grpsubfvalg 13462 |
. . 3
|
| 42 | 22, 41 | syl 14 |
. 2
|
| 43 | 32, 36, 42 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-inn 9067 df-2 9125 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-grp 13420 df-minusg 13421 df-sbg 13422 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |