| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq1 | Unicode version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . 6
| |
| 2 | fveq2 5627 |
. . . . . 6
| |
| 3 | 1, 2 | opeq12d 3865 |
. . . . 5
|
| 4 | freceq2 6539 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | fveq2 5627 |
. . . . . 6
| |
| 7 | eqid 2229 |
. . . . . 6
| |
| 8 | mpoeq12 6064 |
. . . . . 6
| |
| 9 | 6, 7, 8 | sylancl 413 |
. . . . 5
|
| 10 | freceq1 6538 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 5, 11 | eqtrd 2262 |
. . 3
|
| 13 | 12 | rneqd 4953 |
. 2
|
| 14 | df-seqfrec 10670 |
. 2
| |
| 15 | df-seqfrec 10670 |
. 2
| |
| 16 | 13, 14, 15 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fv 5326 df-oprab 6005 df-mpo 6006 df-recs 6451 df-frec 6537 df-seqfrec 10670 |
| This theorem is referenced by: seqeq1d 10675 seq3f1olemqsum 10735 seqf1oglem2 10742 seq3id 10747 seq3z 10750 iserex 11850 summodclem2 11893 summodc 11894 zsumdc 11895 isumsplit 12002 ntrivcvgap 12059 ntrivcvgap0 12060 prodmodclem2 12088 prodmodc 12089 zproddc 12090 fprodntrivap 12095 ege2le3 12182 gsumfzval 13424 gsumval2 13430 |
| Copyright terms: Public domain | W3C validator |