| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq1 | Unicode version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . 6
| |
| 2 | fveq2 5599 |
. . . . . 6
| |
| 3 | 1, 2 | opeq12d 3841 |
. . . . 5
|
| 4 | freceq2 6502 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | fveq2 5599 |
. . . . . 6
| |
| 7 | eqid 2207 |
. . . . . 6
| |
| 8 | mpoeq12 6028 |
. . . . . 6
| |
| 9 | 6, 7, 8 | sylancl 413 |
. . . . 5
|
| 10 | freceq1 6501 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 5, 11 | eqtrd 2240 |
. . 3
|
| 13 | 12 | rneqd 4926 |
. 2
|
| 14 | df-seqfrec 10630 |
. 2
| |
| 15 | df-seqfrec 10630 |
. 2
| |
| 16 | 13, 14, 15 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fv 5298 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-seqfrec 10630 |
| This theorem is referenced by: seqeq1d 10635 seq3f1olemqsum 10695 seqf1oglem2 10702 seq3id 10707 seq3z 10710 iserex 11765 summodclem2 11808 summodc 11809 zsumdc 11810 isumsplit 11917 ntrivcvgap 11974 ntrivcvgap0 11975 prodmodclem2 12003 prodmodc 12004 zproddc 12005 fprodntrivap 12010 ege2le3 12097 gsumfzval 13338 gsumval2 13344 |
| Copyright terms: Public domain | W3C validator |