| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq1 | Unicode version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . 6
| |
| 2 | fveq2 5576 |
. . . . . 6
| |
| 3 | 1, 2 | opeq12d 3827 |
. . . . 5
|
| 4 | freceq2 6479 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | fveq2 5576 |
. . . . . 6
| |
| 7 | eqid 2205 |
. . . . . 6
| |
| 8 | mpoeq12 6005 |
. . . . . 6
| |
| 9 | 6, 7, 8 | sylancl 413 |
. . . . 5
|
| 10 | freceq1 6478 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 5, 11 | eqtrd 2238 |
. . 3
|
| 13 | 12 | rneqd 4907 |
. 2
|
| 14 | df-seqfrec 10593 |
. 2
| |
| 15 | df-seqfrec 10593 |
. 2
| |
| 16 | 13, 14, 15 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fv 5279 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-seqfrec 10593 |
| This theorem is referenced by: seqeq1d 10598 seq3f1olemqsum 10658 seqf1oglem2 10665 seq3id 10670 seq3z 10673 iserex 11650 summodclem2 11693 summodc 11694 zsumdc 11695 isumsplit 11802 ntrivcvgap 11859 ntrivcvgap0 11860 prodmodclem2 11888 prodmodc 11889 zproddc 11890 fprodntrivap 11895 ege2le3 11982 gsumfzval 13223 gsumval2 13229 |
| Copyright terms: Public domain | W3C validator |