ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq1 Unicode version

Theorem seqeq1 10450
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq1  |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )

Proof of Theorem seqeq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6  |-  ( M  =  N  ->  M  =  N )
2 fveq2 5517 . . . . . 6  |-  ( M  =  N  ->  ( F `  M )  =  ( F `  N ) )
31, 2opeq12d 3788 . . . . 5  |-  ( M  =  N  ->  <. M , 
( F `  M
) >.  =  <. N , 
( F `  N
) >. )
4 freceq2 6396 . . . . 5  |-  ( <. M ,  ( F `  M ) >.  =  <. N ,  ( F `  N ) >.  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
53, 4syl 14 . . . 4  |-  ( M  =  N  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
6 fveq2 5517 . . . . . 6  |-  ( M  =  N  ->  ( ZZ>=
`  M )  =  ( ZZ>= `  N )
)
7 eqid 2177 . . . . . 6  |-  _V  =  _V
8 mpoeq12 5937 . . . . . 6  |-  ( ( ( ZZ>= `  M )  =  ( ZZ>= `  N
)  /\  _V  =  _V )  ->  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )  =  (
x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) )
96, 7, 8sylancl 413 . . . . 5  |-  ( M  =  N  ->  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) )
10 freceq1 6395 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. N ,  ( F `  N ) >. )  = frec ( ( x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
119, 10syl 14 . . . 4  |-  ( M  =  N  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. N ,  ( F `  N ) >. )  = frec ( ( x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
125, 11eqtrd 2210 . . 3  |-  ( M  =  N  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
1312rneqd 4858 . 2  |-  ( M  =  N  ->  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  =  ran frec ( ( x  e.  (
ZZ>= `  N ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
14 df-seqfrec 10448 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
15 df-seqfrec 10448 . 2  |-  seq N
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  N ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. )
1613, 14, 153eqtr4g 2235 1  |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   _Vcvv 2739   <.cop 3597   ran crn 4629   ` cfv 5218  (class class class)co 5877    e. cmpo 5879  freccfrec 6393   1c1 7814    + caddc 7816   ZZ>=cuz 9530    seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fv 5226  df-oprab 5881  df-mpo 5882  df-recs 6308  df-frec 6394  df-seqfrec 10448
This theorem is referenced by:  seqeq1d  10453  seq3f1olemqsum  10502  seq3id  10510  seq3z  10513  iserex  11349  summodclem2  11392  summodc  11393  zsumdc  11394  isumsplit  11501  ntrivcvgap  11558  ntrivcvgap0  11559  prodmodclem2  11587  prodmodc  11588  zproddc  11589  fprodntrivap  11594  ege2le3  11681
  Copyright terms: Public domain W3C validator