Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqeq1 | Unicode version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . . 6 | |
2 | fveq2 5486 | . . . . . 6 | |
3 | 1, 2 | opeq12d 3766 | . . . . 5 |
4 | freceq2 6361 | . . . . 5 frec frec | |
5 | 3, 4 | syl 14 | . . . 4 frec frec |
6 | fveq2 5486 | . . . . . 6 | |
7 | eqid 2165 | . . . . . 6 | |
8 | mpoeq12 5902 | . . . . . 6 | |
9 | 6, 7, 8 | sylancl 410 | . . . . 5 |
10 | freceq1 6360 | . . . . 5 frec frec | |
11 | 9, 10 | syl 14 | . . . 4 frec frec |
12 | 5, 11 | eqtrd 2198 | . . 3 frec frec |
13 | 12 | rneqd 4833 | . 2 frec frec |
14 | df-seqfrec 10381 | . 2 frec | |
15 | df-seqfrec 10381 | . 2 frec | |
16 | 13, 14, 15 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cvv 2726 cop 3579 crn 4605 cfv 5188 (class class class)co 5842 cmpo 5844 freccfrec 6358 c1 7754 caddc 7756 cuz 9466 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fv 5196 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-seqfrec 10381 |
This theorem is referenced by: seqeq1d 10386 seq3f1olemqsum 10435 seq3id 10443 seq3z 10446 iserex 11280 summodclem2 11323 summodc 11324 zsumdc 11325 isumsplit 11432 ntrivcvgap 11489 ntrivcvgap0 11490 prodmodclem2 11518 prodmodc 11519 zproddc 11520 fprodntrivap 11525 ege2le3 11612 |
Copyright terms: Public domain | W3C validator |