ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq1 Unicode version

Theorem seqeq1 10672
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq1  |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )

Proof of Theorem seqeq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6  |-  ( M  =  N  ->  M  =  N )
2 fveq2 5627 . . . . . 6  |-  ( M  =  N  ->  ( F `  M )  =  ( F `  N ) )
31, 2opeq12d 3865 . . . . 5  |-  ( M  =  N  ->  <. M , 
( F `  M
) >.  =  <. N , 
( F `  N
) >. )
4 freceq2 6539 . . . . 5  |-  ( <. M ,  ( F `  M ) >.  =  <. N ,  ( F `  N ) >.  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
53, 4syl 14 . . . 4  |-  ( M  =  N  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
6 fveq2 5627 . . . . . 6  |-  ( M  =  N  ->  ( ZZ>=
`  M )  =  ( ZZ>= `  N )
)
7 eqid 2229 . . . . . 6  |-  _V  =  _V
8 mpoeq12 6064 . . . . . 6  |-  ( ( ( ZZ>= `  M )  =  ( ZZ>= `  N
)  /\  _V  =  _V )  ->  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )  =  (
x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) )
96, 7, 8sylancl 413 . . . . 5  |-  ( M  =  N  ->  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) )
10 freceq1 6538 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. N ,  ( F `  N ) >. )  = frec ( ( x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
119, 10syl 14 . . . 4  |-  ( M  =  N  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. N ,  ( F `  N ) >. )  = frec ( ( x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
125, 11eqtrd 2262 . . 3  |-  ( M  =  N  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  N ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
1312rneqd 4953 . 2  |-  ( M  =  N  ->  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  =  ran frec ( ( x  e.  (
ZZ>= `  N ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
14 df-seqfrec 10670 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
15 df-seqfrec 10670 . 2  |-  seq N
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  N ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. )
1613, 14, 153eqtr4g 2287 1  |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   _Vcvv 2799   <.cop 3669   ran crn 4720   ` cfv 5318  (class class class)co 6001    e. cmpo 6003  freccfrec 6536   1c1 8000    + caddc 8002   ZZ>=cuz 9722    seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fv 5326  df-oprab 6005  df-mpo 6006  df-recs 6451  df-frec 6537  df-seqfrec 10670
This theorem is referenced by:  seqeq1d  10675  seq3f1olemqsum  10735  seqf1oglem2  10742  seq3id  10747  seq3z  10750  iserex  11850  summodclem2  11893  summodc  11894  zsumdc  11895  isumsplit  12002  ntrivcvgap  12059  ntrivcvgap0  12060  prodmodclem2  12088  prodmodc  12089  zproddc  12090  fprodntrivap  12095  ege2le3  12182  gsumfzval  13424  gsumval2  13430
  Copyright terms: Public domain W3C validator