| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq1 | Unicode version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . 6
| |
| 2 | fveq2 5578 |
. . . . . 6
| |
| 3 | 1, 2 | opeq12d 3827 |
. . . . 5
|
| 4 | freceq2 6481 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | fveq2 5578 |
. . . . . 6
| |
| 7 | eqid 2205 |
. . . . . 6
| |
| 8 | mpoeq12 6007 |
. . . . . 6
| |
| 9 | 6, 7, 8 | sylancl 413 |
. . . . 5
|
| 10 | freceq1 6480 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 5, 11 | eqtrd 2238 |
. . 3
|
| 13 | 12 | rneqd 4908 |
. 2
|
| 14 | df-seqfrec 10595 |
. 2
| |
| 15 | df-seqfrec 10595 |
. 2
| |
| 16 | 13, 14, 15 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-cnv 4684 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fv 5280 df-oprab 5950 df-mpo 5951 df-recs 6393 df-frec 6479 df-seqfrec 10595 |
| This theorem is referenced by: seqeq1d 10600 seq3f1olemqsum 10660 seqf1oglem2 10667 seq3id 10672 seq3z 10675 iserex 11683 summodclem2 11726 summodc 11727 zsumdc 11728 isumsplit 11835 ntrivcvgap 11892 ntrivcvgap0 11893 prodmodclem2 11921 prodmodc 11922 zproddc 11923 fprodntrivap 11928 ege2le3 12015 gsumfzval 13256 gsumval2 13262 |
| Copyright terms: Public domain | W3C validator |