| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq1 | Unicode version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . 6
| |
| 2 | fveq2 5558 |
. . . . . 6
| |
| 3 | 1, 2 | opeq12d 3816 |
. . . . 5
|
| 4 | freceq2 6451 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | fveq2 5558 |
. . . . . 6
| |
| 7 | eqid 2196 |
. . . . . 6
| |
| 8 | mpoeq12 5982 |
. . . . . 6
| |
| 9 | 6, 7, 8 | sylancl 413 |
. . . . 5
|
| 10 | freceq1 6450 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 5, 11 | eqtrd 2229 |
. . 3
|
| 13 | 12 | rneqd 4895 |
. 2
|
| 14 | df-seqfrec 10540 |
. 2
| |
| 15 | df-seqfrec 10540 |
. 2
| |
| 16 | 13, 14, 15 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fv 5266 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-seqfrec 10540 |
| This theorem is referenced by: seqeq1d 10545 seq3f1olemqsum 10605 seqf1oglem2 10612 seq3id 10617 seq3z 10620 iserex 11504 summodclem2 11547 summodc 11548 zsumdc 11549 isumsplit 11656 ntrivcvgap 11713 ntrivcvgap0 11714 prodmodclem2 11742 prodmodc 11743 zproddc 11744 fprodntrivap 11749 ege2le3 11836 gsumfzval 13034 gsumval2 13040 |
| Copyright terms: Public domain | W3C validator |