| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq1 | Unicode version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . 6
| |
| 2 | fveq2 5561 |
. . . . . 6
| |
| 3 | 1, 2 | opeq12d 3817 |
. . . . 5
|
| 4 | freceq2 6460 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | fveq2 5561 |
. . . . . 6
| |
| 7 | eqid 2196 |
. . . . . 6
| |
| 8 | mpoeq12 5986 |
. . . . . 6
| |
| 9 | 6, 7, 8 | sylancl 413 |
. . . . 5
|
| 10 | freceq1 6459 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 5, 11 | eqtrd 2229 |
. . 3
|
| 13 | 12 | rneqd 4896 |
. 2
|
| 14 | df-seqfrec 10557 |
. 2
| |
| 15 | df-seqfrec 10557 |
. 2
| |
| 16 | 13, 14, 15 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fv 5267 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-seqfrec 10557 |
| This theorem is referenced by: seqeq1d 10562 seq3f1olemqsum 10622 seqf1oglem2 10629 seq3id 10634 seq3z 10637 iserex 11521 summodclem2 11564 summodc 11565 zsumdc 11566 isumsplit 11673 ntrivcvgap 11730 ntrivcvgap0 11731 prodmodclem2 11759 prodmodc 11760 zproddc 11761 fprodntrivap 11766 ege2le3 11853 gsumfzval 13093 gsumval2 13099 |
| Copyright terms: Public domain | W3C validator |