Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqeq1 | Unicode version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . . 6 | |
2 | fveq2 5496 | . . . . . 6 | |
3 | 1, 2 | opeq12d 3773 | . . . . 5 |
4 | freceq2 6372 | . . . . 5 frec frec | |
5 | 3, 4 | syl 14 | . . . 4 frec frec |
6 | fveq2 5496 | . . . . . 6 | |
7 | eqid 2170 | . . . . . 6 | |
8 | mpoeq12 5913 | . . . . . 6 | |
9 | 6, 7, 8 | sylancl 411 | . . . . 5 |
10 | freceq1 6371 | . . . . 5 frec frec | |
11 | 9, 10 | syl 14 | . . . 4 frec frec |
12 | 5, 11 | eqtrd 2203 | . . 3 frec frec |
13 | 12 | rneqd 4840 | . 2 frec frec |
14 | df-seqfrec 10402 | . 2 frec | |
15 | df-seqfrec 10402 | . 2 frec | |
16 | 13, 14, 15 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cvv 2730 cop 3586 crn 4612 cfv 5198 (class class class)co 5853 cmpo 5855 freccfrec 6369 c1 7775 caddc 7777 cuz 9487 cseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fv 5206 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-seqfrec 10402 |
This theorem is referenced by: seqeq1d 10407 seq3f1olemqsum 10456 seq3id 10464 seq3z 10467 iserex 11302 summodclem2 11345 summodc 11346 zsumdc 11347 isumsplit 11454 ntrivcvgap 11511 ntrivcvgap0 11512 prodmodclem2 11540 prodmodc 11541 zproddc 11542 fprodntrivap 11547 ege2le3 11634 |
Copyright terms: Public domain | W3C validator |