ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpo2 Unicode version

Theorem nfmpo2 5910
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo2  |-  F/_ y
( x  e.  A ,  y  e.  B  |->  C )

Proof of Theorem nfmpo2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-mpo 5847 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
2 nfoprab2 5892 . 2  |-  F/_ y { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
31, 2nfcxfr 2305 1  |-  F/_ y
( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   F/_wnfc 2295   {coprab 5843    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  ovmpos  5965  ov2gf  5966  ovmpodxf  5967  ovmpodf  5973  ovmpodv2  5975  xpcomco  6792  mapxpen  6814  cnmpt21  12941  cnmpt2t  12943  cnmptcom  12948
  Copyright terms: Public domain W3C validator