ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpo2 Unicode version

Theorem nfmpo2 6071
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo2  |-  F/_ y
( x  e.  A ,  y  e.  B  |->  C )

Proof of Theorem nfmpo2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-mpo 6005 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
2 nfoprab2 6053 . 2  |-  F/_ y { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
31, 2nfcxfr 2369 1  |-  F/_ y
( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   F/_wnfc 2359   {coprab 6001    e. cmpo 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-oprab 6004  df-mpo 6005
This theorem is referenced by:  ovmpos  6127  ov2gf  6128  ovmpodxf  6129  ovmpodf  6135  ovmpodv2  6137  xpcomco  6981  mapxpen  7005  cnmpt21  14959  cnmpt2t  14961  cnmptcom  14966
  Copyright terms: Public domain W3C validator