ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpo2 Unicode version

Theorem nfmpo2 6003
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo2  |-  F/_ y
( x  e.  A ,  y  e.  B  |->  C )

Proof of Theorem nfmpo2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-mpo 5939 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
2 nfoprab2 5985 . 2  |-  F/_ y { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
31, 2nfcxfr 2344 1  |-  F/_ y
( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372    e. wcel 2175   F/_wnfc 2334   {coprab 5935    e. cmpo 5936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-oprab 5938  df-mpo 5939
This theorem is referenced by:  ovmpos  6059  ov2gf  6060  ovmpodxf  6061  ovmpodf  6067  ovmpodv2  6069  xpcomco  6903  mapxpen  6927  cnmpt21  14681  cnmpt2t  14683  cnmptcom  14688
  Copyright terms: Public domain W3C validator