ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfof Unicode version

Theorem nfof 6066
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1  |-  F/_ x R
Assertion
Ref Expression
nfof  |-  F/_ x  oF R

Proof of Theorem nfof
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 6061 . 2  |-  oF R  =  ( u  e.  _V ,  v  e.  _V  |->  ( w  e.  ( dom  u  i^i  dom  v )  |->  ( ( u `  w
) R ( v `
 w ) ) ) )
2 nfcv 2312 . . 3  |-  F/_ x _V
3 nfcv 2312 . . . 4  |-  F/_ x
( dom  u  i^i  dom  v )
4 nfcv 2312 . . . . 5  |-  F/_ x
( u `  w
)
5 nfof.1 . . . . 5  |-  F/_ x R
6 nfcv 2312 . . . . 5  |-  F/_ x
( v `  w
)
74, 5, 6nfov 5883 . . . 4  |-  F/_ x
( ( u `  w ) R ( v `  w ) )
83, 7nfmpt 4081 . . 3  |-  F/_ x
( w  e.  ( dom  u  i^i  dom  v )  |->  ( ( u `  w ) R ( v `  w ) ) )
92, 2, 8nfmpo 5922 . 2  |-  F/_ x
( u  e.  _V ,  v  e.  _V  |->  ( w  e.  ( dom  u  i^i  dom  v
)  |->  ( ( u `
 w ) R ( v `  w
) ) ) )
101, 9nfcxfr 2309 1  |-  F/_ x  oF R
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2299   _Vcvv 2730    i^i cin 3120    |-> cmpt 4050   dom cdm 4611   ` cfv 5198  (class class class)co 5853    e. cmpo 5855    oFcof 6059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-iota 5160  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator