ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfof Unicode version

Theorem nfof 6055
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1  |-  F/_ x R
Assertion
Ref Expression
nfof  |-  F/_ x  oF R

Proof of Theorem nfof
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 6050 . 2  |-  oF R  =  ( u  e.  _V ,  v  e.  _V  |->  ( w  e.  ( dom  u  i^i  dom  v )  |->  ( ( u `  w
) R ( v `
 w ) ) ) )
2 nfcv 2308 . . 3  |-  F/_ x _V
3 nfcv 2308 . . . 4  |-  F/_ x
( dom  u  i^i  dom  v )
4 nfcv 2308 . . . . 5  |-  F/_ x
( u `  w
)
5 nfof.1 . . . . 5  |-  F/_ x R
6 nfcv 2308 . . . . 5  |-  F/_ x
( v `  w
)
74, 5, 6nfov 5872 . . . 4  |-  F/_ x
( ( u `  w ) R ( v `  w ) )
83, 7nfmpt 4074 . . 3  |-  F/_ x
( w  e.  ( dom  u  i^i  dom  v )  |->  ( ( u `  w ) R ( v `  w ) ) )
92, 2, 8nfmpo 5911 . 2  |-  F/_ x
( u  e.  _V ,  v  e.  _V  |->  ( w  e.  ( dom  u  i^i  dom  v
)  |->  ( ( u `
 w ) R ( v `  w
) ) ) )
101, 9nfcxfr 2305 1  |-  F/_ x  oF R
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2295   _Vcvv 2726    i^i cin 3115    |-> cmpt 4043   dom cdm 4604   ` cfv 5188  (class class class)co 5842    e. cmpo 5844    oFcof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-iota 5153  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator