ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfof Unicode version

Theorem nfof 5899
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1  |-  F/_ x R
Assertion
Ref Expression
nfof  |-  F/_ x  oF R

Proof of Theorem nfof
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 5894 . 2  |-  oF R  =  ( u  e.  _V ,  v  e.  _V  |->  ( w  e.  ( dom  u  i^i  dom  v )  |->  ( ( u `  w
) R ( v `
 w ) ) ) )
2 nfcv 2235 . . 3  |-  F/_ x _V
3 nfcv 2235 . . . 4  |-  F/_ x
( dom  u  i^i  dom  v )
4 nfcv 2235 . . . . 5  |-  F/_ x
( u `  w
)
5 nfof.1 . . . . 5  |-  F/_ x R
6 nfcv 2235 . . . . 5  |-  F/_ x
( v `  w
)
74, 5, 6nfov 5717 . . . 4  |-  F/_ x
( ( u `  w ) R ( v `  w ) )
83, 7nfmpt 3952 . . 3  |-  F/_ x
( w  e.  ( dom  u  i^i  dom  v )  |->  ( ( u `  w ) R ( v `  w ) ) )
92, 2, 8nfmpt2 5755 . 2  |-  F/_ x
( u  e.  _V ,  v  e.  _V  |->  ( w  e.  ( dom  u  i^i  dom  v
)  |->  ( ( u `
 w ) R ( v `  w
) ) ) )
101, 9nfcxfr 2232 1  |-  F/_ x  oF R
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2222   _Vcvv 2633    i^i cin 3012    |-> cmpt 3921   dom cdm 4467   ` cfv 5049  (class class class)co 5690    |-> cmpt2 5692    oFcof 5892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rex 2376  df-v 2635  df-un 3017  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-iota 5014  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-of 5894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator