ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfof Unicode version

Theorem nfof 6136
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1  |-  F/_ x R
Assertion
Ref Expression
nfof  |-  F/_ x  oF R

Proof of Theorem nfof
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 6130 . 2  |-  oF R  =  ( u  e.  _V ,  v  e.  _V  |->  ( w  e.  ( dom  u  i^i  dom  v )  |->  ( ( u `  w
) R ( v `
 w ) ) ) )
2 nfcv 2336 . . 3  |-  F/_ x _V
3 nfcv 2336 . . . 4  |-  F/_ x
( dom  u  i^i  dom  v )
4 nfcv 2336 . . . . 5  |-  F/_ x
( u `  w
)
5 nfof.1 . . . . 5  |-  F/_ x R
6 nfcv 2336 . . . . 5  |-  F/_ x
( v `  w
)
74, 5, 6nfov 5948 . . . 4  |-  F/_ x
( ( u `  w ) R ( v `  w ) )
83, 7nfmpt 4121 . . 3  |-  F/_ x
( w  e.  ( dom  u  i^i  dom  v )  |->  ( ( u `  w ) R ( v `  w ) ) )
92, 2, 8nfmpo 5987 . 2  |-  F/_ x
( u  e.  _V ,  v  e.  _V  |->  ( w  e.  ( dom  u  i^i  dom  v
)  |->  ( ( u `
 w ) R ( v `  w
) ) ) )
101, 9nfcxfr 2333 1  |-  F/_ x  oF R
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2323   _Vcvv 2760    i^i cin 3152    |-> cmpt 4090   dom cdm 4659   ` cfv 5254  (class class class)co 5918    e. cmpo 5920    oFcof 6128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-iota 5215  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator