ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfof Unicode version

Theorem nfof 6224
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1  |-  F/_ x R
Assertion
Ref Expression
nfof  |-  F/_ x  oF R

Proof of Theorem nfof
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 6218 . 2  |-  oF R  =  ( u  e.  _V ,  v  e.  _V  |->  ( w  e.  ( dom  u  i^i  dom  v )  |->  ( ( u `  w
) R ( v `
 w ) ) ) )
2 nfcv 2372 . . 3  |-  F/_ x _V
3 nfcv 2372 . . . 4  |-  F/_ x
( dom  u  i^i  dom  v )
4 nfcv 2372 . . . . 5  |-  F/_ x
( u `  w
)
5 nfof.1 . . . . 5  |-  F/_ x R
6 nfcv 2372 . . . . 5  |-  F/_ x
( v `  w
)
74, 5, 6nfov 6031 . . . 4  |-  F/_ x
( ( u `  w ) R ( v `  w ) )
83, 7nfmpt 4176 . . 3  |-  F/_ x
( w  e.  ( dom  u  i^i  dom  v )  |->  ( ( u `  w ) R ( v `  w ) ) )
92, 2, 8nfmpo 6073 . 2  |-  F/_ x
( u  e.  _V ,  v  e.  _V  |->  ( w  e.  ( dom  u  i^i  dom  v
)  |->  ( ( u `
 w ) R ( v `  w
) ) ) )
101, 9nfcxfr 2369 1  |-  F/_ x  oF R
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2359   _Vcvv 2799    i^i cin 3196    |-> cmpt 4145   dom cdm 4719   ` cfv 5318  (class class class)co 6001    e. cmpo 6003    oFcof 6216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-iota 5278  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator