Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfof Unicode version

Theorem nfof 5987
 Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1
Assertion
Ref Expression
nfof

Proof of Theorem nfof
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 5982 . 2
2 nfcv 2281 . . 3
3 nfcv 2281 . . . 4
4 nfcv 2281 . . . . 5
5 nfof.1 . . . . 5
6 nfcv 2281 . . . . 5
74, 5, 6nfov 5801 . . . 4
83, 7nfmpt 4020 . . 3
92, 2, 8nfmpo 5840 . 2
101, 9nfcxfr 2278 1
 Colors of variables: wff set class Syntax hints:  wnfc 2268  cvv 2686   cin 3070   cmpt 3989   cdm 4539  cfv 5123  (class class class)co 5774   cmpo 5776   cof 5980 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-iota 5088  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator