ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfseq Unicode version

Theorem nfseq 10634
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1  |-  F/_ x M
nfseq.2  |-  F/_ x  .+
nfseq.3  |-  F/_ x F
Assertion
Ref Expression
nfseq  |-  F/_ x  seq M (  .+  ,  F )

Proof of Theorem nfseq
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10625 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( z  e.  (
ZZ>= `  M ) ,  w  e.  _V  |->  <.
( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
) ,  <. M , 
( F `  M
) >. )
2 nfcv 2349 . . . . . 6  |-  F/_ x ZZ>=
3 nfseq.1 . . . . . 6  |-  F/_ x M
42, 3nffv 5604 . . . . 5  |-  F/_ x
( ZZ>= `  M )
5 nfcv 2349 . . . . 5  |-  F/_ x _V
6 nfcv 2349 . . . . . 6  |-  F/_ x
( z  +  1 )
7 nfcv 2349 . . . . . . 7  |-  F/_ x w
8 nfseq.2 . . . . . . 7  |-  F/_ x  .+
9 nfseq.3 . . . . . . . 8  |-  F/_ x F
109, 6nffv 5604 . . . . . . 7  |-  F/_ x
( F `  (
z  +  1 ) )
117, 8, 10nfov 5992 . . . . . 6  |-  F/_ x
( w  .+  ( F `  ( z  +  1 ) ) )
126, 11nfop 3844 . . . . 5  |-  F/_ x <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
134, 5, 12nfmpo 6032 . . . 4  |-  F/_ x
( z  e.  (
ZZ>= `  M ) ,  w  e.  _V  |->  <.
( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
)
149, 3nffv 5604 . . . . 5  |-  F/_ x
( F `  M
)
153, 14nfop 3844 . . . 4  |-  F/_ x <. M ,  ( F `
 M ) >.
1613, 15nffrec 6500 . . 3  |-  F/_ xfrec ( ( z  e.  ( ZZ>= `  M ) ,  w  e.  _V  |->  <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
) ,  <. M , 
( F `  M
) >. )
1716nfrn 4937 . 2  |-  F/_ x ran frec ( ( z  e.  ( ZZ>= `  M ) ,  w  e.  _V  |->  <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
) ,  <. M , 
( F `  M
) >. )
181, 17nfcxfr 2346 1  |-  F/_ x  seq M (  .+  ,  F )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2336   _Vcvv 2773   <.cop 3641   ran crn 4689   ` cfv 5285  (class class class)co 5962    e. cmpo 5964  freccfrec 6494   1c1 7956    + caddc 7958   ZZ>=cuz 9678    seqcseq 10624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-recs 6409  df-frec 6495  df-seqfrec 10625
This theorem is referenced by:  seq3f1olemstep  10691  seq3f1olemp  10692  nfsum1  11752  nfsum  11753  nfcprod1  11950  nfcprod  11951
  Copyright terms: Public domain W3C validator