ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfseq Unicode version

Theorem nfseq 10411
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1  |-  F/_ x M
nfseq.2  |-  F/_ x  .+
nfseq.3  |-  F/_ x F
Assertion
Ref Expression
nfseq  |-  F/_ x  seq M (  .+  ,  F )

Proof of Theorem nfseq
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10402 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( z  e.  (
ZZ>= `  M ) ,  w  e.  _V  |->  <.
( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
) ,  <. M , 
( F `  M
) >. )
2 nfcv 2312 . . . . . 6  |-  F/_ x ZZ>=
3 nfseq.1 . . . . . 6  |-  F/_ x M
42, 3nffv 5506 . . . . 5  |-  F/_ x
( ZZ>= `  M )
5 nfcv 2312 . . . . 5  |-  F/_ x _V
6 nfcv 2312 . . . . . 6  |-  F/_ x
( z  +  1 )
7 nfcv 2312 . . . . . . 7  |-  F/_ x w
8 nfseq.2 . . . . . . 7  |-  F/_ x  .+
9 nfseq.3 . . . . . . . 8  |-  F/_ x F
109, 6nffv 5506 . . . . . . 7  |-  F/_ x
( F `  (
z  +  1 ) )
117, 8, 10nfov 5883 . . . . . 6  |-  F/_ x
( w  .+  ( F `  ( z  +  1 ) ) )
126, 11nfop 3781 . . . . 5  |-  F/_ x <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
134, 5, 12nfmpo 5922 . . . 4  |-  F/_ x
( z  e.  (
ZZ>= `  M ) ,  w  e.  _V  |->  <.
( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
)
149, 3nffv 5506 . . . . 5  |-  F/_ x
( F `  M
)
153, 14nfop 3781 . . . 4  |-  F/_ x <. M ,  ( F `
 M ) >.
1613, 15nffrec 6375 . . 3  |-  F/_ xfrec ( ( z  e.  ( ZZ>= `  M ) ,  w  e.  _V  |->  <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
) ,  <. M , 
( F `  M
) >. )
1716nfrn 4856 . 2  |-  F/_ x ran frec ( ( z  e.  ( ZZ>= `  M ) ,  w  e.  _V  |->  <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
) ,  <. M , 
( F `  M
) >. )
181, 17nfcxfr 2309 1  |-  F/_ x  seq M (  .+  ,  F )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2299   _Vcvv 2730   <.cop 3586   ran crn 4612   ` cfv 5198  (class class class)co 5853    e. cmpo 5855  freccfrec 6369   1c1 7775    + caddc 7777   ZZ>=cuz 9487    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-seqfrec 10402
This theorem is referenced by:  seq3f1olemstep  10457  seq3f1olemp  10458  nfsum1  11319  nfsum  11320  nfcprod1  11517  nfcprod  11518
  Copyright terms: Public domain W3C validator