| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfseq | Unicode version | ||
| Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfseq.1 |
|
| nfseq.2 |
|
| nfseq.3 |
|
| Ref | Expression |
|---|---|
| nfseq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10591 |
. 2
| |
| 2 | nfcv 2347 |
. . . . . 6
| |
| 3 | nfseq.1 |
. . . . . 6
| |
| 4 | 2, 3 | nffv 5585 |
. . . . 5
|
| 5 | nfcv 2347 |
. . . . 5
| |
| 6 | nfcv 2347 |
. . . . . 6
| |
| 7 | nfcv 2347 |
. . . . . . 7
| |
| 8 | nfseq.2 |
. . . . . . 7
| |
| 9 | nfseq.3 |
. . . . . . . 8
| |
| 10 | 9, 6 | nffv 5585 |
. . . . . . 7
|
| 11 | 7, 8, 10 | nfov 5973 |
. . . . . 6
|
| 12 | 6, 11 | nfop 3834 |
. . . . 5
|
| 13 | 4, 5, 12 | nfmpo 6013 |
. . . 4
|
| 14 | 9, 3 | nffv 5585 |
. . . . 5
|
| 15 | 3, 14 | nfop 3834 |
. . . 4
|
| 16 | 13, 15 | nffrec 6481 |
. . 3
|
| 17 | 16 | nfrn 4922 |
. 2
|
| 18 | 1, 17 | nfcxfr 2344 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-xp 4680 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-recs 6390 df-frec 6476 df-seqfrec 10591 |
| This theorem is referenced by: seq3f1olemstep 10657 seq3f1olemp 10658 nfsum1 11609 nfsum 11610 nfcprod1 11807 nfcprod 11808 |
| Copyright terms: Public domain | W3C validator |