ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfseq Unicode version

Theorem nfseq 10549
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1  |-  F/_ x M
nfseq.2  |-  F/_ x  .+
nfseq.3  |-  F/_ x F
Assertion
Ref Expression
nfseq  |-  F/_ x  seq M (  .+  ,  F )

Proof of Theorem nfseq
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10540 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( z  e.  (
ZZ>= `  M ) ,  w  e.  _V  |->  <.
( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
) ,  <. M , 
( F `  M
) >. )
2 nfcv 2339 . . . . . 6  |-  F/_ x ZZ>=
3 nfseq.1 . . . . . 6  |-  F/_ x M
42, 3nffv 5568 . . . . 5  |-  F/_ x
( ZZ>= `  M )
5 nfcv 2339 . . . . 5  |-  F/_ x _V
6 nfcv 2339 . . . . . 6  |-  F/_ x
( z  +  1 )
7 nfcv 2339 . . . . . . 7  |-  F/_ x w
8 nfseq.2 . . . . . . 7  |-  F/_ x  .+
9 nfseq.3 . . . . . . . 8  |-  F/_ x F
109, 6nffv 5568 . . . . . . 7  |-  F/_ x
( F `  (
z  +  1 ) )
117, 8, 10nfov 5952 . . . . . 6  |-  F/_ x
( w  .+  ( F `  ( z  +  1 ) ) )
126, 11nfop 3824 . . . . 5  |-  F/_ x <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
134, 5, 12nfmpo 5991 . . . 4  |-  F/_ x
( z  e.  (
ZZ>= `  M ) ,  w  e.  _V  |->  <.
( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
)
149, 3nffv 5568 . . . . 5  |-  F/_ x
( F `  M
)
153, 14nfop 3824 . . . 4  |-  F/_ x <. M ,  ( F `
 M ) >.
1613, 15nffrec 6454 . . 3  |-  F/_ xfrec ( ( z  e.  ( ZZ>= `  M ) ,  w  e.  _V  |->  <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
) ,  <. M , 
( F `  M
) >. )
1716nfrn 4911 . 2  |-  F/_ x ran frec ( ( z  e.  ( ZZ>= `  M ) ,  w  e.  _V  |->  <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
) ,  <. M , 
( F `  M
) >. )
181, 17nfcxfr 2336 1  |-  F/_ x  seq M (  .+  ,  F )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2326   _Vcvv 2763   <.cop 3625   ran crn 4664   ` cfv 5258  (class class class)co 5922    e. cmpo 5924  freccfrec 6448   1c1 7880    + caddc 7882   ZZ>=cuz 9601    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-seqfrec 10540
This theorem is referenced by:  seq3f1olemstep  10606  seq3f1olemp  10607  nfsum1  11521  nfsum  11522  nfcprod1  11719  nfcprod  11720
  Copyright terms: Public domain W3C validator