| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfseq | Unicode version | ||
| Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfseq.1 |
|
| nfseq.2 |
|
| nfseq.3 |
|
| Ref | Expression |
|---|---|
| nfseq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10625 |
. 2
| |
| 2 | nfcv 2349 |
. . . . . 6
| |
| 3 | nfseq.1 |
. . . . . 6
| |
| 4 | 2, 3 | nffv 5604 |
. . . . 5
|
| 5 | nfcv 2349 |
. . . . 5
| |
| 6 | nfcv 2349 |
. . . . . 6
| |
| 7 | nfcv 2349 |
. . . . . . 7
| |
| 8 | nfseq.2 |
. . . . . . 7
| |
| 9 | nfseq.3 |
. . . . . . . 8
| |
| 10 | 9, 6 | nffv 5604 |
. . . . . . 7
|
| 11 | 7, 8, 10 | nfov 5992 |
. . . . . 6
|
| 12 | 6, 11 | nfop 3844 |
. . . . 5
|
| 13 | 4, 5, 12 | nfmpo 6032 |
. . . 4
|
| 14 | 9, 3 | nffv 5604 |
. . . . 5
|
| 15 | 3, 14 | nfop 3844 |
. . . 4
|
| 16 | 13, 15 | nffrec 6500 |
. . 3
|
| 17 | 16 | nfrn 4937 |
. 2
|
| 18 | 1, 17 | nfcxfr 2346 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-xp 4694 df-cnv 4696 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-recs 6409 df-frec 6495 df-seqfrec 10625 |
| This theorem is referenced by: seq3f1olemstep 10691 seq3f1olemp 10692 nfsum1 11752 nfsum 11753 nfcprod1 11950 nfcprod 11951 |
| Copyright terms: Public domain | W3C validator |