Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeqd | Unicode version |
Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
negeqd.1 |
Ref | Expression |
---|---|
negeqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqd.1 | . 2 | |
2 | negeq 8087 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cneg 8066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-neg 8068 |
This theorem is referenced by: negdi 8151 mulneg2 8290 mulm1 8294 eqord2 8378 mulreim 8498 apneg 8505 divnegap 8598 div2negap 8627 recgt0 8741 infrenegsupex 9528 supminfex 9531 mul2lt0rlt0 9691 ceilqval 10237 ceilid 10246 modqcyc2 10291 monoord2 10408 reneg 10806 imneg 10814 cjcj 10821 cjneg 10828 minmax 11167 minabs 11173 telfsumo2 11404 sinneg 11663 tannegap 11665 sincossq 11685 odd2np1 11806 oexpneg 11810 modgcd 11920 pcneg 12252 ivthdec 13222 limcimolemlt 13233 dvrecap 13277 sinperlem 13329 efimpi 13340 ptolemy 13345 lgsneg1 13526 ex-ceil 13567 |
Copyright terms: Public domain | W3C validator |