| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeqd | Unicode version | ||
| Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| negeqd.1 |
|
| Ref | Expression |
|---|---|
| negeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqd.1 |
. 2
| |
| 2 | negeq 8339 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-neg 8320 |
| This theorem is referenced by: negdi 8403 mulneg2 8542 mulm1 8546 eqord2 8631 mulreim 8751 apneg 8758 divnegap 8853 div2negap 8882 recgt0 8997 infrenegsupex 9789 supminfex 9792 mul2lt0rlt0 9955 ceilqval 10528 ceilid 10537 modqcyc2 10582 monoord2 10708 reneg 11379 imneg 11387 cjcj 11394 cjneg 11401 minmax 11741 minabs 11747 telfsumo2 11978 sinneg 12237 tannegap 12239 sincossq 12259 odd2np1 12384 oexpneg 12388 modgcd 12512 pcneg 12848 mulgval 13659 mulgneg 13677 ivthdec 15318 limcimolemlt 15338 dvrecap 15387 sinperlem 15482 efimpi 15493 ptolemy 15498 lgsneg1 15704 lgseisenlem1 15749 lgseisenlem4 15752 m1lgs 15764 ex-ceil 16090 |
| Copyright terms: Public domain | W3C validator |