| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeqd | Unicode version | ||
| Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| negeqd.1 |
|
| Ref | Expression |
|---|---|
| negeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqd.1 |
. 2
| |
| 2 | negeq 8267 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-neg 8248 |
| This theorem is referenced by: negdi 8331 mulneg2 8470 mulm1 8474 eqord2 8559 mulreim 8679 apneg 8686 divnegap 8781 div2negap 8810 recgt0 8925 infrenegsupex 9717 supminfex 9720 mul2lt0rlt0 9883 ceilqval 10453 ceilid 10462 modqcyc2 10507 monoord2 10633 reneg 11212 imneg 11220 cjcj 11227 cjneg 11234 minmax 11574 minabs 11580 telfsumo2 11811 sinneg 12070 tannegap 12072 sincossq 12092 odd2np1 12217 oexpneg 12221 modgcd 12345 pcneg 12681 mulgval 13491 mulgneg 13509 ivthdec 15149 limcimolemlt 15169 dvrecap 15218 sinperlem 15313 efimpi 15324 ptolemy 15329 lgsneg1 15535 lgseisenlem1 15580 lgseisenlem4 15583 m1lgs 15595 ex-ceil 15699 |
| Copyright terms: Public domain | W3C validator |