Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeqd | Unicode version |
Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
negeqd.1 |
Ref | Expression |
---|---|
negeqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqd.1 | . 2 | |
2 | negeq 8083 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1342 cneg 8062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rex 2448 df-v 2724 df-un 3116 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-iota 5148 df-fv 5191 df-ov 5840 df-neg 8064 |
This theorem is referenced by: negdi 8147 mulneg2 8286 mulm1 8290 eqord2 8374 mulreim 8494 apneg 8501 divnegap 8594 div2negap 8623 recgt0 8737 infrenegsupex 9524 supminfex 9527 mul2lt0rlt0 9687 ceilqval 10232 ceilid 10241 modqcyc2 10286 monoord2 10403 reneg 10800 imneg 10808 cjcj 10815 cjneg 10822 minmax 11161 minabs 11167 telfsumo2 11398 sinneg 11657 tannegap 11659 sincossq 11679 odd2np1 11799 oexpneg 11803 modgcd 11913 pcneg 12245 ivthdec 13189 limcimolemlt 13200 dvrecap 13244 sinperlem 13296 efimpi 13307 ptolemy 13312 ex-ceil 13470 |
Copyright terms: Public domain | W3C validator |