| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opabex3d | Unicode version | ||
| Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) | 
| Ref | Expression | 
|---|---|
| opabex3d.1 | 
 | 
| opabex3d.2 | 
 | 
| Ref | Expression | 
|---|---|
| opabex3d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.42v 1921 | 
. . . . . 6
 | |
| 2 | an12 561 | 
. . . . . . 7
 | |
| 3 | 2 | exbii 1619 | 
. . . . . 6
 | 
| 4 | elxp 4680 | 
. . . . . . . 8
 | |
| 5 | excom 1678 | 
. . . . . . . . 9
 | |
| 6 | an12 561 | 
. . . . . . . . . . . . 13
 | |
| 7 | velsn 3639 | 
. . . . . . . . . . . . . 14
 | |
| 8 | 7 | anbi1i 458 | 
. . . . . . . . . . . . 13
 | 
| 9 | 6, 8 | bitri 184 | 
. . . . . . . . . . . 12
 | 
| 10 | 9 | exbii 1619 | 
. . . . . . . . . . 11
 | 
| 11 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 12 | opeq1 3808 | 
. . . . . . . . . . . . . 14
 | |
| 13 | 12 | eqeq2d 2208 | 
. . . . . . . . . . . . 13
 | 
| 14 | 13 | anbi1d 465 | 
. . . . . . . . . . . 12
 | 
| 15 | 11, 14 | ceqsexv 2802 | 
. . . . . . . . . . 11
 | 
| 16 | 10, 15 | bitri 184 | 
. . . . . . . . . 10
 | 
| 17 | 16 | exbii 1619 | 
. . . . . . . . 9
 | 
| 18 | 5, 17 | bitri 184 | 
. . . . . . . 8
 | 
| 19 | nfv 1542 | 
. . . . . . . . . 10
 | |
| 20 | nfsab1 2186 | 
. . . . . . . . . 10
 | |
| 21 | 19, 20 | nfan 1579 | 
. . . . . . . . 9
 | 
| 22 | nfv 1542 | 
. . . . . . . . 9
 | |
| 23 | opeq2 3809 | 
. . . . . . . . . . 11
 | |
| 24 | 23 | eqeq2d 2208 | 
. . . . . . . . . 10
 | 
| 25 | df-clab 2183 | 
. . . . . . . . . . 11
 | |
| 26 | sbequ12 1785 | 
. . . . . . . . . . . 12
 | |
| 27 | 26 | equcoms 1722 | 
. . . . . . . . . . 11
 | 
| 28 | 25, 27 | bitr4id 199 | 
. . . . . . . . . 10
 | 
| 29 | 24, 28 | anbi12d 473 | 
. . . . . . . . 9
 | 
| 30 | 21, 22, 29 | cbvex 1770 | 
. . . . . . . 8
 | 
| 31 | 4, 18, 30 | 3bitri 206 | 
. . . . . . 7
 | 
| 32 | 31 | anbi2i 457 | 
. . . . . 6
 | 
| 33 | 1, 3, 32 | 3bitr4ri 213 | 
. . . . 5
 | 
| 34 | 33 | exbii 1619 | 
. . . 4
 | 
| 35 | eliun 3920 | 
. . . . 5
 | |
| 36 | df-rex 2481 | 
. . . . 5
 | |
| 37 | 35, 36 | bitri 184 | 
. . . 4
 | 
| 38 | elopab 4292 | 
. . . 4
 | |
| 39 | 34, 37, 38 | 3bitr4i 212 | 
. . 3
 | 
| 40 | 39 | eqriv 2193 | 
. 2
 | 
| 41 | opabex3d.1 | 
. . 3
 | |
| 42 | snexg 4217 | 
. . . . . 6
 | |
| 43 | 11, 42 | ax-mp 5 | 
. . . . 5
 | 
| 44 | opabex3d.2 | 
. . . . 5
 | |
| 45 | xpexg 4777 | 
. . . . 5
 | |
| 46 | 43, 44, 45 | sylancr 414 | 
. . . 4
 | 
| 47 | 46 | ralrimiva 2570 | 
. . 3
 | 
| 48 | iunexg 6176 | 
. . 3
 | |
| 49 | 41, 47, 48 | syl2anc 411 | 
. 2
 | 
| 50 | 40, 49 | eqeltrrid 2284 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 | 
| This theorem is referenced by: acfun 7274 ccfunen 7331 ovshftex 10984 | 
| Copyright terms: Public domain | W3C validator |