| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabex3d | Unicode version | ||
| Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) |
| Ref | Expression |
|---|---|
| opabex3d.1 |
|
| opabex3d.2 |
|
| Ref | Expression |
|---|---|
| opabex3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v 1921 |
. . . . . 6
| |
| 2 | an12 561 |
. . . . . . 7
| |
| 3 | 2 | exbii 1619 |
. . . . . 6
|
| 4 | elxp 4681 |
. . . . . . . 8
| |
| 5 | excom 1678 |
. . . . . . . . 9
| |
| 6 | an12 561 |
. . . . . . . . . . . . 13
| |
| 7 | velsn 3640 |
. . . . . . . . . . . . . 14
| |
| 8 | 7 | anbi1i 458 |
. . . . . . . . . . . . 13
|
| 9 | 6, 8 | bitri 184 |
. . . . . . . . . . . 12
|
| 10 | 9 | exbii 1619 |
. . . . . . . . . . 11
|
| 11 | vex 2766 |
. . . . . . . . . . . 12
| |
| 12 | opeq1 3809 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | eqeq2d 2208 |
. . . . . . . . . . . . 13
|
| 14 | 13 | anbi1d 465 |
. . . . . . . . . . . 12
|
| 15 | 11, 14 | ceqsexv 2802 |
. . . . . . . . . . 11
|
| 16 | 10, 15 | bitri 184 |
. . . . . . . . . 10
|
| 17 | 16 | exbii 1619 |
. . . . . . . . 9
|
| 18 | 5, 17 | bitri 184 |
. . . . . . . 8
|
| 19 | nfv 1542 |
. . . . . . . . . 10
| |
| 20 | nfsab1 2186 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | nfan 1579 |
. . . . . . . . 9
|
| 22 | nfv 1542 |
. . . . . . . . 9
| |
| 23 | opeq2 3810 |
. . . . . . . . . . 11
| |
| 24 | 23 | eqeq2d 2208 |
. . . . . . . . . 10
|
| 25 | df-clab 2183 |
. . . . . . . . . . 11
| |
| 26 | sbequ12 1785 |
. . . . . . . . . . . 12
| |
| 27 | 26 | equcoms 1722 |
. . . . . . . . . . 11
|
| 28 | 25, 27 | bitr4id 199 |
. . . . . . . . . 10
|
| 29 | 24, 28 | anbi12d 473 |
. . . . . . . . 9
|
| 30 | 21, 22, 29 | cbvex 1770 |
. . . . . . . 8
|
| 31 | 4, 18, 30 | 3bitri 206 |
. . . . . . 7
|
| 32 | 31 | anbi2i 457 |
. . . . . 6
|
| 33 | 1, 3, 32 | 3bitr4ri 213 |
. . . . 5
|
| 34 | 33 | exbii 1619 |
. . . 4
|
| 35 | eliun 3921 |
. . . . 5
| |
| 36 | df-rex 2481 |
. . . . 5
| |
| 37 | 35, 36 | bitri 184 |
. . . 4
|
| 38 | elopab 4293 |
. . . 4
| |
| 39 | 34, 37, 38 | 3bitr4i 212 |
. . 3
|
| 40 | 39 | eqriv 2193 |
. 2
|
| 41 | opabex3d.1 |
. . 3
| |
| 42 | snexg 4218 |
. . . . . 6
| |
| 43 | 11, 42 | ax-mp 5 |
. . . . 5
|
| 44 | opabex3d.2 |
. . . . 5
| |
| 45 | xpexg 4778 |
. . . . 5
| |
| 46 | 43, 44, 45 | sylancr 414 |
. . . 4
|
| 47 | 46 | ralrimiva 2570 |
. . 3
|
| 48 | iunexg 6185 |
. . 3
| |
| 49 | 41, 47, 48 | syl2anc 411 |
. 2
|
| 50 | 40, 49 | eqeltrrid 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 |
| This theorem is referenced by: acfun 7290 ccfunen 7347 ovshftex 11001 |
| Copyright terms: Public domain | W3C validator |