Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabex3d | Unicode version |
Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) |
Ref | Expression |
---|---|
opabex3d.1 | |
opabex3d.2 |
Ref | Expression |
---|---|
opabex3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 1904 | . . . . . 6 | |
2 | an12 561 | . . . . . . 7 | |
3 | 2 | exbii 1603 | . . . . . 6 |
4 | elxp 4637 | . . . . . . . 8 | |
5 | excom 1662 | . . . . . . . . 9 | |
6 | an12 561 | . . . . . . . . . . . . 13 | |
7 | velsn 3606 | . . . . . . . . . . . . . 14 | |
8 | 7 | anbi1i 458 | . . . . . . . . . . . . 13 |
9 | 6, 8 | bitri 184 | . . . . . . . . . . . 12 |
10 | 9 | exbii 1603 | . . . . . . . . . . 11 |
11 | vex 2738 | . . . . . . . . . . . 12 | |
12 | opeq1 3774 | . . . . . . . . . . . . . 14 | |
13 | 12 | eqeq2d 2187 | . . . . . . . . . . . . 13 |
14 | 13 | anbi1d 465 | . . . . . . . . . . . 12 |
15 | 11, 14 | ceqsexv 2774 | . . . . . . . . . . 11 |
16 | 10, 15 | bitri 184 | . . . . . . . . . 10 |
17 | 16 | exbii 1603 | . . . . . . . . 9 |
18 | 5, 17 | bitri 184 | . . . . . . . 8 |
19 | nfv 1526 | . . . . . . . . . 10 | |
20 | nfsab1 2165 | . . . . . . . . . 10 | |
21 | 19, 20 | nfan 1563 | . . . . . . . . 9 |
22 | nfv 1526 | . . . . . . . . 9 | |
23 | opeq2 3775 | . . . . . . . . . . 11 | |
24 | 23 | eqeq2d 2187 | . . . . . . . . . 10 |
25 | df-clab 2162 | . . . . . . . . . . 11 | |
26 | sbequ12 1769 | . . . . . . . . . . . 12 | |
27 | 26 | equcoms 1706 | . . . . . . . . . . 11 |
28 | 25, 27 | bitr4id 199 | . . . . . . . . . 10 |
29 | 24, 28 | anbi12d 473 | . . . . . . . . 9 |
30 | 21, 22, 29 | cbvex 1754 | . . . . . . . 8 |
31 | 4, 18, 30 | 3bitri 206 | . . . . . . 7 |
32 | 31 | anbi2i 457 | . . . . . 6 |
33 | 1, 3, 32 | 3bitr4ri 213 | . . . . 5 |
34 | 33 | exbii 1603 | . . . 4 |
35 | eliun 3886 | . . . . 5 | |
36 | df-rex 2459 | . . . . 5 | |
37 | 35, 36 | bitri 184 | . . . 4 |
38 | elopab 4252 | . . . 4 | |
39 | 34, 37, 38 | 3bitr4i 212 | . . 3 |
40 | 39 | eqriv 2172 | . 2 |
41 | opabex3d.1 | . . 3 | |
42 | snexg 4179 | . . . . . 6 | |
43 | 11, 42 | ax-mp 5 | . . . . 5 |
44 | opabex3d.2 | . . . . 5 | |
45 | xpexg 4734 | . . . . 5 | |
46 | 43, 44, 45 | sylancr 414 | . . . 4 |
47 | 46 | ralrimiva 2548 | . . 3 |
48 | iunexg 6110 | . . 3 | |
49 | 41, 47, 48 | syl2anc 411 | . 2 |
50 | 40, 49 | eqeltrrid 2263 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wex 1490 wsb 1760 wcel 2146 cab 2161 wral 2453 wrex 2454 cvv 2735 csn 3589 cop 3592 ciun 3882 copab 4058 cxp 4618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 |
This theorem is referenced by: acfun 7196 ccfunen 7238 ovshftex 10796 |
Copyright terms: Public domain | W3C validator |