Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabex3d | Unicode version |
Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) |
Ref | Expression |
---|---|
opabex3d.1 | |
opabex3d.2 |
Ref | Expression |
---|---|
opabex3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 1894 | . . . . . 6 | |
2 | an12 551 | . . . . . . 7 | |
3 | 2 | exbii 1593 | . . . . . 6 |
4 | elxp 4621 | . . . . . . . 8 | |
5 | excom 1652 | . . . . . . . . 9 | |
6 | an12 551 | . . . . . . . . . . . . 13 | |
7 | velsn 3593 | . . . . . . . . . . . . . 14 | |
8 | 7 | anbi1i 454 | . . . . . . . . . . . . 13 |
9 | 6, 8 | bitri 183 | . . . . . . . . . . . 12 |
10 | 9 | exbii 1593 | . . . . . . . . . . 11 |
11 | vex 2729 | . . . . . . . . . . . 12 | |
12 | opeq1 3758 | . . . . . . . . . . . . . 14 | |
13 | 12 | eqeq2d 2177 | . . . . . . . . . . . . 13 |
14 | 13 | anbi1d 461 | . . . . . . . . . . . 12 |
15 | 11, 14 | ceqsexv 2765 | . . . . . . . . . . 11 |
16 | 10, 15 | bitri 183 | . . . . . . . . . 10 |
17 | 16 | exbii 1593 | . . . . . . . . 9 |
18 | 5, 17 | bitri 183 | . . . . . . . 8 |
19 | nfv 1516 | . . . . . . . . . 10 | |
20 | nfsab1 2155 | . . . . . . . . . 10 | |
21 | 19, 20 | nfan 1553 | . . . . . . . . 9 |
22 | nfv 1516 | . . . . . . . . 9 | |
23 | opeq2 3759 | . . . . . . . . . . 11 | |
24 | 23 | eqeq2d 2177 | . . . . . . . . . 10 |
25 | df-clab 2152 | . . . . . . . . . . 11 | |
26 | sbequ12 1759 | . . . . . . . . . . . 12 | |
27 | 26 | equcoms 1696 | . . . . . . . . . . 11 |
28 | 25, 27 | bitr4id 198 | . . . . . . . . . 10 |
29 | 24, 28 | anbi12d 465 | . . . . . . . . 9 |
30 | 21, 22, 29 | cbvex 1744 | . . . . . . . 8 |
31 | 4, 18, 30 | 3bitri 205 | . . . . . . 7 |
32 | 31 | anbi2i 453 | . . . . . 6 |
33 | 1, 3, 32 | 3bitr4ri 212 | . . . . 5 |
34 | 33 | exbii 1593 | . . . 4 |
35 | eliun 3870 | . . . . 5 | |
36 | df-rex 2450 | . . . . 5 | |
37 | 35, 36 | bitri 183 | . . . 4 |
38 | elopab 4236 | . . . 4 | |
39 | 34, 37, 38 | 3bitr4i 211 | . . 3 |
40 | 39 | eqriv 2162 | . 2 |
41 | opabex3d.1 | . . 3 | |
42 | snexg 4163 | . . . . . 6 | |
43 | 11, 42 | ax-mp 5 | . . . . 5 |
44 | opabex3d.2 | . . . . 5 | |
45 | xpexg 4718 | . . . . 5 | |
46 | 43, 44, 45 | sylancr 411 | . . . 4 |
47 | 46 | ralrimiva 2539 | . . 3 |
48 | iunexg 6087 | . . 3 | |
49 | 41, 47, 48 | syl2anc 409 | . 2 |
50 | 40, 49 | eqeltrrid 2254 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wsb 1750 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 csn 3576 cop 3579 ciun 3866 copab 4042 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: acfun 7163 ccfunen 7205 ovshftex 10761 |
Copyright terms: Public domain | W3C validator |