| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabex3d | Unicode version | ||
| Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) |
| Ref | Expression |
|---|---|
| opabex3d.1 |
|
| opabex3d.2 |
|
| Ref | Expression |
|---|---|
| opabex3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v 1929 |
. . . . . 6
| |
| 2 | an12 561 |
. . . . . . 7
| |
| 3 | 2 | exbii 1627 |
. . . . . 6
|
| 4 | elxp 4691 |
. . . . . . . 8
| |
| 5 | excom 1686 |
. . . . . . . . 9
| |
| 6 | an12 561 |
. . . . . . . . . . . . 13
| |
| 7 | velsn 3649 |
. . . . . . . . . . . . . 14
| |
| 8 | 7 | anbi1i 458 |
. . . . . . . . . . . . 13
|
| 9 | 6, 8 | bitri 184 |
. . . . . . . . . . . 12
|
| 10 | 9 | exbii 1627 |
. . . . . . . . . . 11
|
| 11 | vex 2774 |
. . . . . . . . . . . 12
| |
| 12 | opeq1 3818 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | eqeq2d 2216 |
. . . . . . . . . . . . 13
|
| 14 | 13 | anbi1d 465 |
. . . . . . . . . . . 12
|
| 15 | 11, 14 | ceqsexv 2810 |
. . . . . . . . . . 11
|
| 16 | 10, 15 | bitri 184 |
. . . . . . . . . 10
|
| 17 | 16 | exbii 1627 |
. . . . . . . . 9
|
| 18 | 5, 17 | bitri 184 |
. . . . . . . 8
|
| 19 | nfv 1550 |
. . . . . . . . . 10
| |
| 20 | nfsab1 2194 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | nfan 1587 |
. . . . . . . . 9
|
| 22 | nfv 1550 |
. . . . . . . . 9
| |
| 23 | opeq2 3819 |
. . . . . . . . . . 11
| |
| 24 | 23 | eqeq2d 2216 |
. . . . . . . . . 10
|
| 25 | df-clab 2191 |
. . . . . . . . . . 11
| |
| 26 | sbequ12 1793 |
. . . . . . . . . . . 12
| |
| 27 | 26 | equcoms 1730 |
. . . . . . . . . . 11
|
| 28 | 25, 27 | bitr4id 199 |
. . . . . . . . . 10
|
| 29 | 24, 28 | anbi12d 473 |
. . . . . . . . 9
|
| 30 | 21, 22, 29 | cbvex 1778 |
. . . . . . . 8
|
| 31 | 4, 18, 30 | 3bitri 206 |
. . . . . . 7
|
| 32 | 31 | anbi2i 457 |
. . . . . 6
|
| 33 | 1, 3, 32 | 3bitr4ri 213 |
. . . . 5
|
| 34 | 33 | exbii 1627 |
. . . 4
|
| 35 | eliun 3930 |
. . . . 5
| |
| 36 | df-rex 2489 |
. . . . 5
| |
| 37 | 35, 36 | bitri 184 |
. . . 4
|
| 38 | elopab 4303 |
. . . 4
| |
| 39 | 34, 37, 38 | 3bitr4i 212 |
. . 3
|
| 40 | 39 | eqriv 2201 |
. 2
|
| 41 | opabex3d.1 |
. . 3
| |
| 42 | snexg 4227 |
. . . . . 6
| |
| 43 | 11, 42 | ax-mp 5 |
. . . . 5
|
| 44 | opabex3d.2 |
. . . . 5
| |
| 45 | xpexg 4788 |
. . . . 5
| |
| 46 | 43, 44, 45 | sylancr 414 |
. . . 4
|
| 47 | 46 | ralrimiva 2578 |
. . 3
|
| 48 | iunexg 6203 |
. . 3
| |
| 49 | 41, 47, 48 | syl2anc 411 |
. 2
|
| 50 | 40, 49 | eqeltrrid 2292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 |
| This theorem is referenced by: acfun 7318 ccfunen 7375 ovshftex 11101 |
| Copyright terms: Public domain | W3C validator |