| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabex3d | Unicode version | ||
| Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) |
| Ref | Expression |
|---|---|
| opabex3d.1 |
|
| opabex3d.2 |
|
| Ref | Expression |
|---|---|
| opabex3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v 1930 |
. . . . . 6
| |
| 2 | an12 561 |
. . . . . . 7
| |
| 3 | 2 | exbii 1628 |
. . . . . 6
|
| 4 | elxp 4692 |
. . . . . . . 8
| |
| 5 | excom 1687 |
. . . . . . . . 9
| |
| 6 | an12 561 |
. . . . . . . . . . . . 13
| |
| 7 | velsn 3650 |
. . . . . . . . . . . . . 14
| |
| 8 | 7 | anbi1i 458 |
. . . . . . . . . . . . 13
|
| 9 | 6, 8 | bitri 184 |
. . . . . . . . . . . 12
|
| 10 | 9 | exbii 1628 |
. . . . . . . . . . 11
|
| 11 | vex 2775 |
. . . . . . . . . . . 12
| |
| 12 | opeq1 3819 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | eqeq2d 2217 |
. . . . . . . . . . . . 13
|
| 14 | 13 | anbi1d 465 |
. . . . . . . . . . . 12
|
| 15 | 11, 14 | ceqsexv 2811 |
. . . . . . . . . . 11
|
| 16 | 10, 15 | bitri 184 |
. . . . . . . . . 10
|
| 17 | 16 | exbii 1628 |
. . . . . . . . 9
|
| 18 | 5, 17 | bitri 184 |
. . . . . . . 8
|
| 19 | nfv 1551 |
. . . . . . . . . 10
| |
| 20 | nfsab1 2195 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | nfan 1588 |
. . . . . . . . 9
|
| 22 | nfv 1551 |
. . . . . . . . 9
| |
| 23 | opeq2 3820 |
. . . . . . . . . . 11
| |
| 24 | 23 | eqeq2d 2217 |
. . . . . . . . . 10
|
| 25 | df-clab 2192 |
. . . . . . . . . . 11
| |
| 26 | sbequ12 1794 |
. . . . . . . . . . . 12
| |
| 27 | 26 | equcoms 1731 |
. . . . . . . . . . 11
|
| 28 | 25, 27 | bitr4id 199 |
. . . . . . . . . 10
|
| 29 | 24, 28 | anbi12d 473 |
. . . . . . . . 9
|
| 30 | 21, 22, 29 | cbvex 1779 |
. . . . . . . 8
|
| 31 | 4, 18, 30 | 3bitri 206 |
. . . . . . 7
|
| 32 | 31 | anbi2i 457 |
. . . . . 6
|
| 33 | 1, 3, 32 | 3bitr4ri 213 |
. . . . 5
|
| 34 | 33 | exbii 1628 |
. . . 4
|
| 35 | eliun 3931 |
. . . . 5
| |
| 36 | df-rex 2490 |
. . . . 5
| |
| 37 | 35, 36 | bitri 184 |
. . . 4
|
| 38 | elopab 4304 |
. . . 4
| |
| 39 | 34, 37, 38 | 3bitr4i 212 |
. . 3
|
| 40 | 39 | eqriv 2202 |
. 2
|
| 41 | opabex3d.1 |
. . 3
| |
| 42 | snexg 4228 |
. . . . . 6
| |
| 43 | 11, 42 | ax-mp 5 |
. . . . 5
|
| 44 | opabex3d.2 |
. . . . 5
| |
| 45 | xpexg 4789 |
. . . . 5
| |
| 46 | 43, 44, 45 | sylancr 414 |
. . . 4
|
| 47 | 46 | ralrimiva 2579 |
. . 3
|
| 48 | iunexg 6204 |
. . 3
| |
| 49 | 41, 47, 48 | syl2anc 411 |
. 2
|
| 50 | 40, 49 | eqeltrrid 2293 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 |
| This theorem is referenced by: acfun 7319 ccfunen 7376 ovshftex 11130 |
| Copyright terms: Public domain | W3C validator |