ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabex3 Unicode version

Theorem opabex3 6179
Description: Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
opabex3.1  |-  A  e. 
_V
opabex3.2  |-  ( x  e.  A  ->  { y  |  ph }  e.  _V )
Assertion
Ref Expression
opabex3  |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
Distinct variable group:    x, A, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem opabex3
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1921 . . . . . 6  |-  ( E. y ( x  e.  A  /\  ( z  =  <. x ,  y
>.  /\  ph ) )  <-> 
( x  e.  A  /\  E. y ( z  =  <. x ,  y
>.  /\  ph ) ) )
2 an12 561 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  ph ) )  <->  ( x  e.  A  /\  (
z  =  <. x ,  y >.  /\  ph ) ) )
32exbii 1619 . . . . . 6  |-  ( E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ph ) )  <->  E. y
( x  e.  A  /\  ( z  =  <. x ,  y >.  /\  ph ) ) )
4 elxp 4680 . . . . . . . 8  |-  ( z  e.  ( { x }  X.  { y  | 
ph } )  <->  E. v E. w ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) ) )
5 excom 1678 . . . . . . . . 9  |-  ( E. v E. w ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  E. w E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) ) )
6 an12 561 . . . . . . . . . . . . 13  |-  ( ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  ( v  e.  { x }  /\  ( z  =  <. v ,  w >.  /\  w  e.  { y  |  ph } ) ) )
7 velsn 3639 . . . . . . . . . . . . . 14  |-  ( v  e.  { x }  <->  v  =  x )
87anbi1i 458 . . . . . . . . . . . . 13  |-  ( ( v  e.  { x }  /\  ( z  = 
<. v ,  w >.  /\  w  e.  { y  |  ph } ) )  <->  ( v  =  x  /\  ( z  =  <. v ,  w >.  /\  w  e.  {
y  |  ph }
) ) )
96, 8bitri 184 . . . . . . . . . . . 12  |-  ( ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  ( v  =  x  /\  (
z  =  <. v ,  w >.  /\  w  e.  { y  |  ph } ) ) )
109exbii 1619 . . . . . . . . . . 11  |-  ( E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) )  <->  E. v
( v  =  x  /\  ( z  = 
<. v ,  w >.  /\  w  e.  { y  |  ph } ) ) )
11 vex 2766 . . . . . . . . . . . 12  |-  x  e. 
_V
12 opeq1 3808 . . . . . . . . . . . . . 14  |-  ( v  =  x  ->  <. v ,  w >.  =  <. x ,  w >. )
1312eqeq2d 2208 . . . . . . . . . . . . 13  |-  ( v  =  x  ->  (
z  =  <. v ,  w >.  <->  z  =  <. x ,  w >. )
)
1413anbi1d 465 . . . . . . . . . . . 12  |-  ( v  =  x  ->  (
( z  =  <. v ,  w >.  /\  w  e.  { y  |  ph } )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ph }
) ) )
1511, 14ceqsexv 2802 . . . . . . . . . . 11  |-  ( E. v ( v  =  x  /\  ( z  =  <. v ,  w >.  /\  w  e.  {
y  |  ph }
) )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ph }
) )
1610, 15bitri 184 . . . . . . . . . 10  |-  ( E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ph }
) )
1716exbii 1619 . . . . . . . . 9  |-  ( E. w E. v ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  E. w
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } ) )
185, 17bitri 184 . . . . . . . 8  |-  ( E. v E. w ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  E. w
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } ) )
19 nfv 1542 . . . . . . . . . 10  |-  F/ y  z  =  <. x ,  w >.
20 nfsab1 2186 . . . . . . . . . 10  |-  F/ y  w  e.  { y  |  ph }
2119, 20nfan 1579 . . . . . . . . 9  |-  F/ y ( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } )
22 nfv 1542 . . . . . . . . 9  |-  F/ w
( z  =  <. x ,  y >.  /\  ph )
23 opeq2 3809 . . . . . . . . . . 11  |-  ( w  =  y  ->  <. x ,  w >.  =  <. x ,  y >. )
2423eqeq2d 2208 . . . . . . . . . 10  |-  ( w  =  y  ->  (
z  =  <. x ,  w >.  <->  z  =  <. x ,  y >. )
)
25 df-clab 2183 . . . . . . . . . . 11  |-  ( w  e.  { y  | 
ph }  <->  [ w  /  y ] ph )
26 sbequ12 1785 . . . . . . . . . . . 12  |-  ( y  =  w  ->  ( ph 
<->  [ w  /  y ] ph ) )
2726equcoms 1722 . . . . . . . . . . 11  |-  ( w  =  y  ->  ( ph 
<->  [ w  /  y ] ph ) )
2825, 27bitr4id 199 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w  e.  { y  |  ph }  <->  ph ) )
2924, 28anbi12d 473 . . . . . . . . 9  |-  ( w  =  y  ->  (
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } )  <->  ( z  =  <. x ,  y
>.  /\  ph ) ) )
3021, 22, 29cbvex 1770 . . . . . . . 8  |-  ( E. w ( z  = 
<. x ,  w >.  /\  w  e.  { y  |  ph } )  <->  E. y ( z  = 
<. x ,  y >.  /\  ph ) )
314, 18, 303bitri 206 . . . . . . 7  |-  ( z  e.  ( { x }  X.  { y  | 
ph } )  <->  E. y
( z  =  <. x ,  y >.  /\  ph ) )
3231anbi2i 457 . . . . . 6  |-  ( ( x  e.  A  /\  z  e.  ( {
x }  X.  {
y  |  ph }
) )  <->  ( x  e.  A  /\  E. y
( z  =  <. x ,  y >.  /\  ph ) ) )
331, 3, 323bitr4ri 213 . . . . 5  |-  ( ( x  e.  A  /\  z  e.  ( {
x }  X.  {
y  |  ph }
) )  <->  E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  ph ) ) )
3433exbii 1619 . . . 4  |-  ( E. x ( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ph } ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ph ) ) )
35 eliun 3920 . . . . 5  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  | 
ph } )  <->  E. x  e.  A  z  e.  ( { x }  X.  { y  |  ph } ) )
36 df-rex 2481 . . . . 5  |-  ( E. x  e.  A  z  e.  ( { x }  X.  { y  | 
ph } )  <->  E. x
( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ph } ) ) )
3735, 36bitri 184 . . . 4  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  | 
ph } )  <->  E. x
( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ph } ) ) )
38 elopab 4292 . . . 4  |-  ( z  e.  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ph ) ) )
3934, 37, 383bitr4i 212 . . 3  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  | 
ph } )  <->  z  e.  {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
4039eqriv 2193 . 2  |-  U_ x  e.  A  ( {
x }  X.  {
y  |  ph }
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
41 opabex3.1 . . 3  |-  A  e. 
_V
42 snexg 4217 . . . . . 6  |-  ( x  e.  _V  ->  { x }  e.  _V )
4311, 42ax-mp 5 . . . . 5  |-  { x }  e.  _V
44 opabex3.2 . . . . 5  |-  ( x  e.  A  ->  { y  |  ph }  e.  _V )
45 xpexg 4777 . . . . 5  |-  ( ( { x }  e.  _V  /\  { y  | 
ph }  e.  _V )  ->  ( { x }  X.  { y  | 
ph } )  e. 
_V )
4643, 44, 45sylancr 414 . . . 4  |-  ( x  e.  A  ->  ( { x }  X.  { y  |  ph } )  e.  _V )
4746rgen 2550 . . 3  |-  A. x  e.  A  ( {
x }  X.  {
y  |  ph }
)  e.  _V
48 iunexg 6176 . . 3  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( { x }  X.  { y  |  ph } )  e.  _V )  ->  U_ x  e.  A  ( { x }  X.  { y  |  ph } )  e.  _V )
4941, 47, 48mp2an 426 . 2  |-  U_ x  e.  A  ( {
x }  X.  {
y  |  ph }
)  e.  _V
5040, 49eqeltrri 2270 1  |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506   [wsb 1776    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763   {csn 3622   <.cop 3625   U_ciun 3916   {copab 4093    X. cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator