| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabex3 | Unicode version | ||
| Description: Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| opabex3.1 |
|
| opabex3.2 |
|
| Ref | Expression |
|---|---|
| opabex3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v 1953 |
. . . . . 6
| |
| 2 | an12 561 |
. . . . . . 7
| |
| 3 | 2 | exbii 1651 |
. . . . . 6
|
| 4 | elxp 4736 |
. . . . . . . 8
| |
| 5 | excom 1710 |
. . . . . . . . 9
| |
| 6 | an12 561 |
. . . . . . . . . . . . 13
| |
| 7 | velsn 3683 |
. . . . . . . . . . . . . 14
| |
| 8 | 7 | anbi1i 458 |
. . . . . . . . . . . . 13
|
| 9 | 6, 8 | bitri 184 |
. . . . . . . . . . . 12
|
| 10 | 9 | exbii 1651 |
. . . . . . . . . . 11
|
| 11 | vex 2802 |
. . . . . . . . . . . 12
| |
| 12 | opeq1 3857 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | eqeq2d 2241 |
. . . . . . . . . . . . 13
|
| 14 | 13 | anbi1d 465 |
. . . . . . . . . . . 12
|
| 15 | 11, 14 | ceqsexv 2839 |
. . . . . . . . . . 11
|
| 16 | 10, 15 | bitri 184 |
. . . . . . . . . 10
|
| 17 | 16 | exbii 1651 |
. . . . . . . . 9
|
| 18 | 5, 17 | bitri 184 |
. . . . . . . 8
|
| 19 | nfv 1574 |
. . . . . . . . . 10
| |
| 20 | nfsab1 2219 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | nfan 1611 |
. . . . . . . . 9
|
| 22 | nfv 1574 |
. . . . . . . . 9
| |
| 23 | opeq2 3858 |
. . . . . . . . . . 11
| |
| 24 | 23 | eqeq2d 2241 |
. . . . . . . . . 10
|
| 25 | df-clab 2216 |
. . . . . . . . . . 11
| |
| 26 | sbequ12 1817 |
. . . . . . . . . . . 12
| |
| 27 | 26 | equcoms 1754 |
. . . . . . . . . . 11
|
| 28 | 25, 27 | bitr4id 199 |
. . . . . . . . . 10
|
| 29 | 24, 28 | anbi12d 473 |
. . . . . . . . 9
|
| 30 | 21, 22, 29 | cbvex 1802 |
. . . . . . . 8
|
| 31 | 4, 18, 30 | 3bitri 206 |
. . . . . . 7
|
| 32 | 31 | anbi2i 457 |
. . . . . 6
|
| 33 | 1, 3, 32 | 3bitr4ri 213 |
. . . . 5
|
| 34 | 33 | exbii 1651 |
. . . 4
|
| 35 | eliun 3969 |
. . . . 5
| |
| 36 | df-rex 2514 |
. . . . 5
| |
| 37 | 35, 36 | bitri 184 |
. . . 4
|
| 38 | elopab 4346 |
. . . 4
| |
| 39 | 34, 37, 38 | 3bitr4i 212 |
. . 3
|
| 40 | 39 | eqriv 2226 |
. 2
|
| 41 | opabex3.1 |
. . 3
| |
| 42 | snexg 4268 |
. . . . . 6
| |
| 43 | 11, 42 | ax-mp 5 |
. . . . 5
|
| 44 | opabex3.2 |
. . . . 5
| |
| 45 | xpexg 4833 |
. . . . 5
| |
| 46 | 43, 44, 45 | sylancr 414 |
. . . 4
|
| 47 | 46 | rgen 2583 |
. . 3
|
| 48 | iunexg 6264 |
. . 3
| |
| 49 | 41, 47, 48 | mp2an 426 |
. 2
|
| 50 | 40, 49 | eqeltrri 2303 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |