ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  piord Unicode version

Theorem piord 7214
Description: A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.)
Assertion
Ref Expression
piord  |-  ( A  e.  N.  ->  Ord  A )

Proof of Theorem piord
StepHypRef Expression
1 pinn 7212 . 2  |-  ( A  e.  N.  ->  A  e.  om )
2 nnord 4569 . 2  |-  ( A  e.  om  ->  Ord  A )
31, 2syl 14 1  |-  ( A  e.  N.  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128   Ord word 4321   omcom 4547   N.cnpi 7175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-int 3808  df-tr 4063  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-ni 7207
This theorem is referenced by:  prarloclemn  7402
  Copyright terms: Public domain W3C validator