ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  piord Unicode version

Theorem piord 7310
Description: A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.)
Assertion
Ref Expression
piord  |-  ( A  e.  N.  ->  Ord  A )

Proof of Theorem piord
StepHypRef Expression
1 pinn 7308 . 2  |-  ( A  e.  N.  ->  A  e.  om )
2 nnord 4612 . 2  |-  ( A  e.  om  ->  Ord  A )
31, 2syl 14 1  |-  ( A  e.  N.  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   Ord word 4363   omcom 4590   N.cnpi 7271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811  df-int 3846  df-tr 4103  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-ni 7303
This theorem is referenced by:  prarloclemn  7498
  Copyright terms: Public domain W3C validator