| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsscn | Unicode version | ||
| Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| nnsscn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9075 |
. 2
| |
| 2 | ax-resscn 8052 |
. 2
| |
| 3 | 1, 2 | sstri 3210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-in 3180 df-ss 3187 df-int 3900 df-inn 9072 |
| This theorem is referenced by: nnex 9077 nncn 9079 nncnd 9085 nn0addcl 9365 nn0mulcl 9366 dfz2 9480 nnexpcl 10734 fprodnncl 12036 mpodvdsmulf1o 15577 fsumdvdsmul 15578 |
| Copyright terms: Public domain | W3C validator |