ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsscn Unicode version

Theorem nnsscn 8583
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
nnsscn  |-  NN  C_  CC

Proof of Theorem nnsscn
StepHypRef Expression
1 nnssre 8582 . 2  |-  NN  C_  RR
2 ax-resscn 7587 . 2  |-  RR  C_  CC
31, 2sstri 3056 1  |-  NN  C_  CC
Colors of variables: wff set class
Syntax hints:    C_ wss 3021   CCcc 7498   RRcr 7499   NNcn 8578
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-cnex 7586  ax-resscn 7587  ax-1re 7589  ax-addrcl 7592
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-v 2643  df-in 3027  df-ss 3034  df-int 3719  df-inn 8579
This theorem is referenced by:  nnex  8584  nncn  8586  nncnd  8592  nn0addcl  8864  nn0mulcl  8865  dfz2  8975  nnexpcl  10147
  Copyright terms: Public domain W3C validator