ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsscn Unicode version

Theorem nnsscn 8989
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
nnsscn  |-  NN  C_  CC

Proof of Theorem nnsscn
StepHypRef Expression
1 nnssre 8988 . 2  |-  NN  C_  RR
2 ax-resscn 7966 . 2  |-  RR  C_  CC
31, 2sstri 3189 1  |-  NN  C_  CC
Colors of variables: wff set class
Syntax hints:    C_ wss 3154   CCcc 7872   RRcr 7873   NNcn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3160  df-ss 3167  df-int 3872  df-inn 8985
This theorem is referenced by:  nnex  8990  nncn  8992  nncnd  8998  nn0addcl  9278  nn0mulcl  9279  dfz2  9392  nnexpcl  10626  fprodnncl  11756
  Copyright terms: Public domain W3C validator