ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssre Unicode version

Theorem nnssre 8882
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre  |-  NN  C_  RR

Proof of Theorem nnssre
StepHypRef Expression
1 1re 7919 . 2  |-  1  e.  RR
2 peano2re 8055 . . 3  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
32rgen 2523 . 2  |-  A. x  e.  RR  ( x  + 
1 )  e.  RR
4 peano5nni 8881 . 2  |-  ( ( 1  e.  RR  /\  A. x  e.  RR  (
x  +  1 )  e.  RR )  ->  NN  C_  RR )
51, 3, 4mp2an 424 1  |-  NN  C_  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   A.wral 2448    C_ wss 3121  (class class class)co 5853   RRcr 7773   1c1 7775    + caddc 7777   NNcn 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-int 3832  df-inn 8879
This theorem is referenced by:  nnsscn  8883  nnre  8885  nnred  8891  nn0ssre  9139  nninfdclemp1  12405  nninfdclemf1  12407
  Copyright terms: Public domain W3C validator