ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssre Unicode version

Theorem nnssre 9040
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre  |-  NN  C_  RR

Proof of Theorem nnssre
StepHypRef Expression
1 1re 8071 . 2  |-  1  e.  RR
2 peano2re 8208 . . 3  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
32rgen 2559 . 2  |-  A. x  e.  RR  ( x  + 
1 )  e.  RR
4 peano5nni 9039 . 2  |-  ( ( 1  e.  RR  /\  A. x  e.  RR  (
x  +  1 )  e.  RR )  ->  NN  C_  RR )
51, 3, 4mp2an 426 1  |-  NN  C_  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   A.wral 2484    C_ wss 3166  (class class class)co 5944   RRcr 7924   1c1 7926    + caddc 7928   NNcn 9036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-int 3886  df-inn 9037
This theorem is referenced by:  nnsscn  9041  nnre  9043  nnred  9049  nn0ssre  9299  nninfdclemp1  12821  nninfdclemf1  12823
  Copyright terms: Public domain W3C validator