ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssre Unicode version

Theorem nnssre 9075
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre  |-  NN  C_  RR

Proof of Theorem nnssre
StepHypRef Expression
1 1re 8106 . 2  |-  1  e.  RR
2 peano2re 8243 . . 3  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
32rgen 2561 . 2  |-  A. x  e.  RR  ( x  + 
1 )  e.  RR
4 peano5nni 9074 . 2  |-  ( ( 1  e.  RR  /\  A. x  e.  RR  (
x  +  1 )  e.  RR )  ->  NN  C_  RR )
51, 3, 4mp2an 426 1  |-  NN  C_  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   A.wral 2486    C_ wss 3174  (class class class)co 5967   RRcr 7959   1c1 7961    + caddc 7963   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-in 3180  df-ss 3187  df-int 3900  df-inn 9072
This theorem is referenced by:  nnsscn  9076  nnre  9078  nnred  9084  nn0ssre  9334  nninfdclemp1  12936  nninfdclemf1  12938
  Copyright terms: Public domain W3C validator