ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssre Unicode version

Theorem nnssre 8988
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre  |-  NN  C_  RR

Proof of Theorem nnssre
StepHypRef Expression
1 1re 8020 . 2  |-  1  e.  RR
2 peano2re 8157 . . 3  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
32rgen 2547 . 2  |-  A. x  e.  RR  ( x  + 
1 )  e.  RR
4 peano5nni 8987 . 2  |-  ( ( 1  e.  RR  /\  A. x  e.  RR  (
x  +  1 )  e.  RR )  ->  NN  C_  RR )
51, 3, 4mp2an 426 1  |-  NN  C_  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   A.wral 2472    C_ wss 3154  (class class class)co 5919   RRcr 7873   1c1 7875    + caddc 7877   NNcn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3160  df-ss 3167  df-int 3872  df-inn 8985
This theorem is referenced by:  nnsscn  8989  nnre  8991  nnred  8997  nn0ssre  9247  nninfdclemp1  12610  nninfdclemf1  12612
  Copyright terms: Public domain W3C validator