ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssre Unicode version

Theorem nnssre 8925
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre  |-  NN  C_  RR

Proof of Theorem nnssre
StepHypRef Expression
1 1re 7958 . 2  |-  1  e.  RR
2 peano2re 8095 . . 3  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
32rgen 2530 . 2  |-  A. x  e.  RR  ( x  + 
1 )  e.  RR
4 peano5nni 8924 . 2  |-  ( ( 1  e.  RR  /\  A. x  e.  RR  (
x  +  1 )  e.  RR )  ->  NN  C_  RR )
51, 3, 4mp2an 426 1  |-  NN  C_  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   A.wral 2455    C_ wss 3131  (class class class)co 5877   RRcr 7812   1c1 7814    + caddc 7816   NNcn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-in 3137  df-ss 3144  df-int 3847  df-inn 8922
This theorem is referenced by:  nnsscn  8926  nnre  8928  nnred  8934  nn0ssre  9182  nninfdclemp1  12453  nninfdclemf1  12455
  Copyright terms: Public domain W3C validator