| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | Unicode version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8049 |
. 2
| |
| 2 | nnsscn 9041 |
. 2
| |
| 3 | 1, 2 | ssexi 4182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-int 3886 df-inn 9037 |
| This theorem is referenced by: nn0ex 9301 nn0ennn 10578 climrecvg1n 11659 climcvg1nlem 11660 divcnv 11808 trireciplem 11811 expcnvap0 11813 expcnv 11815 geo2lim 11827 prmex 12435 qnumval 12507 qdenval 12508 oddennn 12763 evenennn 12764 xpnnen 12765 znnen 12769 qnnen 12802 ssnnctlemct 12817 nninfdc 12824 ndxarg 12855 mulgnngsum 13463 trilpo 15986 redcwlpo 15998 nconstwlpo 16009 neapmkv 16011 |
| Copyright terms: Public domain | W3C validator |