| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | Unicode version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8123 |
. 2
| |
| 2 | nnsscn 9115 |
. 2
| |
| 3 | 1, 2 | ssexi 4222 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3924 df-inn 9111 |
| This theorem is referenced by: nn0ex 9375 nn0ennn 10655 climrecvg1n 11859 climcvg1nlem 11860 divcnv 12008 trireciplem 12011 expcnvap0 12013 expcnv 12015 geo2lim 12027 prmex 12635 qnumval 12707 qdenval 12708 oddennn 12963 evenennn 12964 xpnnen 12965 znnen 12969 qnnen 13002 ssnnctlemct 13017 nninfdc 13024 ndxarg 13055 mulgnngsum 13664 trilpo 16411 redcwlpo 16423 nconstwlpo 16434 neapmkv 16436 |
| Copyright terms: Public domain | W3C validator |