Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnex | Unicode version |
Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7850 | . 2 | |
2 | nnsscn 8832 | . 2 | |
3 | 1, 2 | ssexi 4102 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 cvv 2712 cc 7724 cn 8827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 ax-cnex 7817 ax-resscn 7818 ax-1re 7820 ax-addrcl 7823 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-in 3108 df-ss 3115 df-int 3808 df-inn 8828 |
This theorem is referenced by: nn0ex 9090 nn0ennn 10325 climrecvg1n 11238 climcvg1nlem 11239 divcnv 11387 trireciplem 11390 expcnvap0 11392 expcnv 11394 geo2lim 11406 prmex 11981 qnumval 12050 qdenval 12051 oddennn 12104 evenennn 12105 xpnnen 12106 znnen 12110 qnnen 12143 ndxarg 12184 trilpo 13585 redcwlpo 13597 nconstwlpo 13607 neapmkv 13609 |
Copyright terms: Public domain | W3C validator |