| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | Unicode version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8084 |
. 2
| |
| 2 | nnsscn 9076 |
. 2
| |
| 3 | 1, 2 | ssexi 4198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-in 3180 df-ss 3187 df-int 3900 df-inn 9072 |
| This theorem is referenced by: nn0ex 9336 nn0ennn 10615 climrecvg1n 11774 climcvg1nlem 11775 divcnv 11923 trireciplem 11926 expcnvap0 11928 expcnv 11930 geo2lim 11942 prmex 12550 qnumval 12622 qdenval 12623 oddennn 12878 evenennn 12879 xpnnen 12880 znnen 12884 qnnen 12917 ssnnctlemct 12932 nninfdc 12939 ndxarg 12970 mulgnngsum 13578 trilpo 16184 redcwlpo 16196 nconstwlpo 16207 neapmkv 16209 |
| Copyright terms: Public domain | W3C validator |