| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | Unicode version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8051 |
. 2
| |
| 2 | nnsscn 9043 |
. 2
| |
| 3 | 1, 2 | ssexi 4183 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-int 3886 df-inn 9039 |
| This theorem is referenced by: nn0ex 9303 nn0ennn 10580 climrecvg1n 11692 climcvg1nlem 11693 divcnv 11841 trireciplem 11844 expcnvap0 11846 expcnv 11848 geo2lim 11860 prmex 12468 qnumval 12540 qdenval 12541 oddennn 12796 evenennn 12797 xpnnen 12798 znnen 12802 qnnen 12835 ssnnctlemct 12850 nninfdc 12857 ndxarg 12888 mulgnngsum 13496 trilpo 16019 redcwlpo 16031 nconstwlpo 16042 neapmkv 16044 |
| Copyright terms: Public domain | W3C validator |