Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsscn | GIF version |
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
nnsscn | ⊢ ℕ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8861 | . 2 ⊢ ℕ ⊆ ℝ | |
2 | ax-resscn 7845 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3151 | 1 ⊢ ℕ ⊆ ℂ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3116 ℂcc 7751 ℝcr 7752 ℕcn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 df-inn 8858 |
This theorem is referenced by: nnex 8863 nncn 8865 nncnd 8871 nn0addcl 9149 nn0mulcl 9150 dfz2 9263 nnexpcl 10468 fprodnncl 11551 |
Copyright terms: Public domain | W3C validator |