ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsscn GIF version

Theorem nnsscn 8817
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
nnsscn ℕ ⊆ ℂ

Proof of Theorem nnsscn
StepHypRef Expression
1 nnssre 8816 . 2 ℕ ⊆ ℝ
2 ax-resscn 7803 . 2 ℝ ⊆ ℂ
31, 2sstri 3133 1 ℕ ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wss 3098  cc 7709  cr 7710  cn 8812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136  ax-sep 4078  ax-cnex 7802  ax-resscn 7803  ax-1re 7805  ax-addrcl 7808
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-v 2711  df-in 3104  df-ss 3111  df-int 3804  df-inn 8813
This theorem is referenced by:  nnex  8818  nncn  8820  nncnd  8826  nn0addcl  9104  nn0mulcl  9105  dfz2  9215  nnexpcl  10410  fprodnncl  11484
  Copyright terms: Public domain W3C validator