| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsscn | GIF version | ||
| Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| nnsscn | ⊢ ℕ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9110 | . 2 ⊢ ℕ ⊆ ℝ | |
| 2 | ax-resscn 8087 | . 2 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | sstri 3233 | 1 ⊢ ℕ ⊆ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3197 ℂcc 7993 ℝcr 7994 ℕcn 9106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3923 df-inn 9107 |
| This theorem is referenced by: nnex 9112 nncn 9114 nncnd 9120 nn0addcl 9400 nn0mulcl 9401 dfz2 9515 nnexpcl 10769 fprodnncl 12116 mpodvdsmulf1o 15658 fsumdvdsmul 15659 |
| Copyright terms: Public domain | W3C validator |