ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsscn GIF version

Theorem nnsscn 9061
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
nnsscn ℕ ⊆ ℂ

Proof of Theorem nnsscn
StepHypRef Expression
1 nnssre 9060 . 2 ℕ ⊆ ℝ
2 ax-resscn 8037 . 2 ℝ ⊆ ℂ
31, 2sstri 3206 1 ℕ ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wss 3170  cc 7943  cr 7944  cn 9056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4170  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-in 3176  df-ss 3183  df-int 3892  df-inn 9057
This theorem is referenced by:  nnex  9062  nncn  9064  nncnd  9070  nn0addcl  9350  nn0mulcl  9351  dfz2  9465  nnexpcl  10719  fprodnncl  11996  mpodvdsmulf1o  15537  fsumdvdsmul  15538
  Copyright terms: Public domain W3C validator