Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsscn | GIF version |
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
nnsscn | ⊢ ℕ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8816 | . 2 ⊢ ℕ ⊆ ℝ | |
2 | ax-resscn 7803 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3133 | 1 ⊢ ℕ ⊆ ℂ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3098 ℂcc 7709 ℝcr 7710 ℕcn 8812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-sep 4078 ax-cnex 7802 ax-resscn 7803 ax-1re 7805 ax-addrcl 7808 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-in 3104 df-ss 3111 df-int 3804 df-inn 8813 |
This theorem is referenced by: nnex 8818 nncn 8820 nncnd 8826 nn0addcl 9104 nn0mulcl 9105 dfz2 9215 nnexpcl 10410 fprodnncl 11484 |
Copyright terms: Public domain | W3C validator |