![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnsscn | GIF version |
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
nnsscn | ⊢ ℕ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8926 | . 2 ⊢ ℕ ⊆ ℝ | |
2 | ax-resscn 7906 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3166 | 1 ⊢ ℕ ⊆ ℂ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3131 ℂcc 7812 ℝcr 7813 ℕcn 8922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4123 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2741 df-in 3137 df-ss 3144 df-int 3847 df-inn 8923 |
This theorem is referenced by: nnex 8928 nncn 8930 nncnd 8936 nn0addcl 9214 nn0mulcl 9215 dfz2 9328 nnexpcl 10536 fprodnncl 11621 |
Copyright terms: Public domain | W3C validator |