ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsscn GIF version

Theorem nnsscn 8862
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
nnsscn ℕ ⊆ ℂ

Proof of Theorem nnsscn
StepHypRef Expression
1 nnssre 8861 . 2 ℕ ⊆ ℝ
2 ax-resscn 7845 . 2 ℝ ⊆ ℂ
31, 2sstri 3151 1 ℕ ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wss 3116  cc 7751  cr 7752  cn 8857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-int 3825  df-inn 8858
This theorem is referenced by:  nnex  8863  nncn  8865  nncnd  8871  nn0addcl  9149  nn0mulcl  9150  dfz2  9263  nnexpcl  10468  fprodnncl  11551
  Copyright terms: Public domain W3C validator