| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsscn | GIF version | ||
| Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| nnsscn | ⊢ ℕ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9039 | . 2 ⊢ ℕ ⊆ ℝ | |
| 2 | ax-resscn 8016 | . 2 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | sstri 3201 | 1 ⊢ ℕ ⊆ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3165 ℂcc 7922 ℝcr 7923 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-int 3885 df-inn 9036 |
| This theorem is referenced by: nnex 9041 nncn 9043 nncnd 9049 nn0addcl 9329 nn0mulcl 9330 dfz2 9444 nnexpcl 10695 fprodnncl 11863 mpodvdsmulf1o 15404 fsumdvdsmul 15405 |
| Copyright terms: Public domain | W3C validator |