ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsscn GIF version

Theorem nnsscn 9111
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
nnsscn ℕ ⊆ ℂ

Proof of Theorem nnsscn
StepHypRef Expression
1 nnssre 9110 . 2 ℕ ⊆ ℝ
2 ax-resscn 8087 . 2 ℝ ⊆ ℂ
31, 2sstri 3233 1 ℕ ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wss 3197  cc 7993  cr 7994  cn 9106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-int 3923  df-inn 9107
This theorem is referenced by:  nnex  9112  nncn  9114  nncnd  9120  nn0addcl  9400  nn0mulcl  9401  dfz2  9515  nnexpcl  10769  fprodnncl  12116  mpodvdsmulf1o  15658  fsumdvdsmul  15659
  Copyright terms: Public domain W3C validator