ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsscn GIF version

Theorem nnsscn 9040
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
nnsscn ℕ ⊆ ℂ

Proof of Theorem nnsscn
StepHypRef Expression
1 nnssre 9039 . 2 ℕ ⊆ ℝ
2 ax-resscn 8016 . 2 ℝ ⊆ ℂ
31, 2sstri 3201 1 ℕ ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wss 3165  cc 7922  cr 7923  cn 9035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-int 3885  df-inn 9036
This theorem is referenced by:  nnex  9041  nncn  9043  nncnd  9049  nn0addcl  9329  nn0mulcl  9330  dfz2  9444  nnexpcl  10695  fprodnncl  11863  mpodvdsmulf1o  15404  fsumdvdsmul  15405
  Copyright terms: Public domain W3C validator