![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnsscn | GIF version |
Description: The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
nnsscn | ⊢ ℕ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8976 | . 2 ⊢ ℕ ⊆ ℝ | |
2 | ax-resscn 7954 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3188 | 1 ⊢ ℕ ⊆ ℂ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3153 ℂcc 7860 ℝcr 7861 ℕcn 8972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7953 ax-resscn 7954 ax-1re 7956 ax-addrcl 7959 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3159 df-ss 3166 df-int 3871 df-inn 8973 |
This theorem is referenced by: nnex 8978 nncn 8980 nncnd 8986 nn0addcl 9265 nn0mulcl 9266 dfz2 9379 nnexpcl 10610 fprodnncl 11740 |
Copyright terms: Public domain | W3C validator |