Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nncn | Unicode version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nncn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 8858 | . 2 | |
2 | 1 | sseli 3137 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cc 7747 cn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-v 2727 df-in 3121 df-ss 3128 df-int 3824 df-inn 8854 |
This theorem is referenced by: nn1m1nn 8871 nn1suc 8872 nnaddcl 8873 nnmulcl 8874 nnsub 8892 nndiv 8894 nndivtr 8895 nnnn0addcl 9140 nn0nnaddcl 9141 elnnnn0 9153 nnnegz 9190 zaddcllempos 9224 zaddcllemneg 9226 nnaddm1cl 9248 elz2 9258 zdiv 9275 zdivadd 9276 zdivmul 9277 nneoor 9289 nneo 9290 divfnzn 9555 qmulz 9557 qaddcl 9569 qnegcl 9570 qmulcl 9571 qreccl 9576 nnledivrp 9698 nn0ledivnn 9699 fseq1m1p1 10026 nnsplit 10068 ubmelm1fzo 10157 subfzo0 10173 flqdiv 10252 addmodidr 10304 modfzo0difsn 10326 nn0ennn 10364 expnegap0 10459 expm1t 10479 nnsqcl 10520 nnlesq 10554 facdiv 10647 facndiv 10648 faclbnd 10650 bcn1 10667 bcn2m1 10678 arisum 11435 arisum2 11436 expcnvap0 11439 mertenslem2 11473 ef0lem 11597 efexp 11619 nndivides 11733 modmulconst 11759 dvdsflip 11785 nn0enne 11835 nno 11839 divalgmod 11860 ndvdsadd 11864 modgcd 11920 gcddiv 11948 gcdmultiple 11949 gcdmultiplez 11950 rpmulgcd 11955 rplpwr 11956 sqgcd 11958 lcmgcdlem 12005 qredeq 12024 qredeu 12025 divgcdcoprm0 12029 cncongrcoprm 12034 prmind2 12048 isprm6 12075 sqrt2irr 12090 oddpwdclemodd 12100 divnumden 12124 divdenle 12125 nn0gcdsq 12128 hashgcdlem 12166 pythagtriplem1 12193 pythagtriplem2 12194 pythagtriplem6 12198 pythagtriplem7 12199 pythagtriplem12 12203 pythagtriplem14 12205 pythagtriplem15 12206 pythagtriplem16 12207 pythagtriplem17 12208 pythagtriplem19 12210 pcqcl 12234 pcexp 12237 pcneg 12252 fldivp1 12274 oddprmdvds 12280 prmpwdvds 12281 infpnlem2 12286 dvexp 13275 rpcxproot 13434 logbgcd1irr 13485 lgssq2 13542 2sqlem6 13556 2sqlem10 13561 |
Copyright terms: Public domain | W3C validator |