| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0addcl | Unicode version | ||
| Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| nn0addcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 9043 |
. 2
| |
| 2 | id 19 |
. . 3
| |
| 3 | df-n0 9298 |
. . 3
| |
| 4 | nnaddcl 9058 |
. . . 4
| |
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | 2, 3, 5 | un0addcl 9330 |
. 2
|
| 7 | 1, 6 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0id 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-n0 9298 |
| This theorem is referenced by: nn0addcli 9334 peano2nn0 9337 nn0addcld 9354 nn0readdcl 9356 difelfznle 10259 elfzodifsumelfzo 10332 expadd 10728 faclbnd6 10891 facavg 10893 ccatlen 11054 ccatrn 11068 swrdccat2 11127 fsumnn0cl 11747 bcxmas 11833 eftlub 12034 4sqlem1 12744 nn0subm 14378 mplsubgfilemcl 14494 2sqlem7 15631 |
| Copyright terms: Public domain | W3C validator |