| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0addcl | Unicode version | ||
| Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| nn0addcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 9115 |
. 2
| |
| 2 | id 19 |
. . 3
| |
| 3 | df-n0 9370 |
. . 3
| |
| 4 | nnaddcl 9130 |
. . . 4
| |
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | 2, 3, 5 | un0addcl 9402 |
. 2
|
| 7 | 1, 6 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0id 8107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: nn0addcli 9406 peano2nn0 9409 nn0addcld 9426 nn0readdcl 9428 difelfznle 10331 elfzodifsumelfzo 10407 expadd 10803 faclbnd6 10966 facavg 10968 ccatlen 11130 ccatrn 11144 swrdccat2 11203 swrdswrdlem 11236 swrdswrd 11237 swrdccatin1 11257 pfxccatin12lem3 11264 fsumnn0cl 11914 bcxmas 12000 eftlub 12201 4sqlem1 12911 nn0subm 14547 mplsubgfilemcl 14663 2sqlem7 15800 |
| Copyright terms: Public domain | W3C validator |