| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0addcl | Unicode version | ||
| Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| nn0addcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 8997 |
. 2
| |
| 2 | id 19 |
. . 3
| |
| 3 | df-n0 9252 |
. . 3
| |
| 4 | nnaddcl 9012 |
. . . 4
| |
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | 2, 3, 5 | un0addcl 9284 |
. 2
|
| 7 | 1, 6 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0id 7989 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-inn 8993 df-n0 9252 |
| This theorem is referenced by: nn0addcli 9288 peano2nn0 9291 nn0addcld 9308 nn0readdcl 9310 difelfznle 10212 elfzodifsumelfzo 10279 expadd 10675 faclbnd6 10838 facavg 10840 fsumnn0cl 11570 bcxmas 11656 eftlub 11857 4sqlem1 12567 nn0subm 14149 2sqlem7 15372 |
| Copyright terms: Public domain | W3C validator |