ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addcl Unicode version

Theorem nn0addcl 9214
Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
nn0addcl  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )

Proof of Theorem nn0addcl
StepHypRef Expression
1 nnsscn 8927 . 2  |-  NN  C_  CC
2 id 19 . . 3  |-  ( NN  C_  CC  ->  NN  C_  CC )
3 df-n0 9180 . . 3  |-  NN0  =  ( NN  u.  { 0 } )
4 nnaddcl 8942 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
54adantl 277 . . 3  |-  ( ( NN  C_  CC  /\  ( M  e.  NN  /\  N  e.  NN ) )  -> 
( M  +  N
)  e.  NN )
62, 3, 5un0addcl 9212 . 2  |-  ( ( NN  C_  CC  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( M  +  N
)  e.  NN0 )
71, 6mpan 424 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148    C_ wss 3131  (class class class)co 5878   CCcc 7812    + caddc 7817   NNcn 8922   NN0cn0 9179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0id 7922
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5881  df-inn 8923  df-n0 9180
This theorem is referenced by:  nn0addcli  9216  peano2nn0  9219  nn0addcld  9236  nn0readdcl  9238  difelfznle  10138  elfzodifsumelfzo  10204  expadd  10565  faclbnd6  10727  facavg  10729  fsumnn0cl  11414  bcxmas  11500  eftlub  11701  4sqlem1  12389  nn0subm  13617  2sqlem7  14608
  Copyright terms: Public domain W3C validator