ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nprrel Unicode version

Theorem nprrel 4764
Description: No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.)
Hypotheses
Ref Expression
nprrel.1  |-  Rel  R
nprrel.2  |-  -.  A  e.  _V
Assertion
Ref Expression
nprrel  |-  -.  A R B

Proof of Theorem nprrel
StepHypRef Expression
1 nprrel.2 . 2  |-  -.  A  e.  _V
2 nprrel.1 . . 3  |-  Rel  R
32brrelex1i 4762 . 2  |-  ( A R B  ->  A  e.  _V )
41, 3mto 666 1  |-  -.  A R B
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2200   _Vcvv 2799   class class class wbr 4083   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator