ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nprrel Unicode version

Theorem nprrel 4705
Description: No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.)
Hypotheses
Ref Expression
nprrel.1  |-  Rel  R
nprrel.2  |-  -.  A  e.  _V
Assertion
Ref Expression
nprrel  |-  -.  A R B

Proof of Theorem nprrel
StepHypRef Expression
1 nprrel.2 . 2  |-  -.  A  e.  _V
2 nprrel.1 . . 3  |-  Rel  R
32brrelex1i 4703 . 2  |-  ( A R B  ->  A  e.  _V )
41, 3mto 663 1  |-  -.  A R B
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2164   _Vcvv 2760   class class class wbr 4030   Rel wrel 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator