Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brrelex1i | Unicode version |
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
brrelexi.1 |
Ref | Expression |
---|---|
brrelex1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 | |
2 | brrelex1 4648 | . 2 | |
3 | 1, 2 | mpan 422 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cvv 2730 class class class wbr 3987 wrel 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-xp 4615 df-rel 4616 |
This theorem is referenced by: nprrel 4654 vtoclr 4657 opeliunxp2 4749 ideqg 4760 issetid 4763 fvmptss2 5569 opeliunxp2f 6215 brtpos2 6228 brdomg 6724 ctex 6729 isfi 6737 en1uniel 6780 xpdom2 6807 xpdom1g 6809 xpen 6821 isbth 6942 djudom 7068 cc3 7223 aprcl 8558 climcl 11238 climi 11243 climrecl 11280 structex 12421 |
Copyright terms: Public domain | W3C validator |