Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brrelex1i | Unicode version |
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
brrelexi.1 |
Ref | Expression |
---|---|
brrelex1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 | |
2 | brrelex1 4650 | . 2 | |
3 | 1, 2 | mpan 422 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cvv 2730 class class class wbr 3989 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 |
This theorem is referenced by: nprrel 4656 vtoclr 4659 opeliunxp2 4751 ideqg 4762 issetid 4765 fvmptss2 5571 opeliunxp2f 6217 brtpos2 6230 brdomg 6726 ctex 6731 isfi 6739 en1uniel 6782 xpdom2 6809 xpdom1g 6811 xpen 6823 isbth 6944 djudom 7070 cc3 7230 aprcl 8565 climcl 11245 climi 11250 climrecl 11287 structex 12428 |
Copyright terms: Public domain | W3C validator |