| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brrelex1i | Unicode version | ||
| Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| brrelexi.1 |
|
| Ref | Expression |
|---|---|
| brrelex1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 |
. 2
| |
| 2 | brrelex1 4715 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-rel 4683 |
| This theorem is referenced by: nprrel 4721 vtoclr 4724 opeliunxp2 4819 ideqg 4830 issetid 4833 fvmptss2 5656 opeliunxp2f 6326 brtpos2 6339 brdomg 6839 ctex 6844 isfi 6854 domssr 6871 en1uniel 6898 xpdom2 6928 xpdom1g 6930 xpen 6944 isbth 7071 djudom 7197 cc3 7382 aprcl 8721 climcl 11626 climi 11631 climrecl 11668 structex 12877 |
| Copyright terms: Public domain | W3C validator |