Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brrelex1i | Unicode version |
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
brrelexi.1 |
Ref | Expression |
---|---|
brrelex1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 | |
2 | brrelex1 4643 | . 2 | |
3 | 1, 2 | mpan 421 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cvv 2726 class class class wbr 3982 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 |
This theorem is referenced by: nprrel 4649 vtoclr 4652 opeliunxp2 4744 ideqg 4755 issetid 4758 fvmptss2 5561 opeliunxp2f 6206 brtpos2 6219 brdomg 6714 ctex 6719 isfi 6727 en1uniel 6770 xpdom2 6797 xpdom1g 6799 xpen 6811 isbth 6932 djudom 7058 cc3 7209 aprcl 8544 climcl 11223 climi 11228 climrecl 11265 structex 12406 |
Copyright terms: Public domain | W3C validator |