| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brrelex1i | Unicode version | ||
| Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| brrelexi.1 |
|
| Ref | Expression |
|---|---|
| brrelex1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 |
. 2
| |
| 2 | brrelex1 4758 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 |
| This theorem is referenced by: nprrel 4764 vtoclr 4767 opeliunxp2 4862 ideqg 4873 issetid 4876 fvmptss2 5709 opeliunxp2f 6384 brtpos2 6397 brdomg 6897 ctex 6902 isfi 6912 domssr 6929 en1uniel 6956 xpdom2 6990 xpdom1g 6992 xpen 7006 isbth 7134 djudom 7260 cc3 7454 aprcl 8793 climcl 11793 climi 11798 climrecl 11835 structex 13044 |
| Copyright terms: Public domain | W3C validator |