ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex1i Unicode version

Theorem brrelex1i 4762
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.)
Hypothesis
Ref Expression
brrelexi.1  |-  Rel  R
Assertion
Ref Expression
brrelex1i  |-  ( A R B  ->  A  e.  _V )

Proof of Theorem brrelex1i
StepHypRef Expression
1 brrelexi.1 . 2  |-  Rel  R
2 brrelex1 4758 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
31, 2mpan 424 1  |-  ( A R B  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   _Vcvv 2799   class class class wbr 4083   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726
This theorem is referenced by:  nprrel  4764  vtoclr  4767  opeliunxp2  4862  ideqg  4873  issetid  4876  fvmptss2  5709  opeliunxp2f  6384  brtpos2  6397  brdomg  6897  ctex  6902  isfi  6912  domssr  6929  en1uniel  6956  xpdom2  6990  xpdom1g  6992  xpen  7006  isbth  7134  djudom  7260  cc3  7454  aprcl  8793  climcl  11793  climi  11798  climrecl  11835  structex  13044
  Copyright terms: Public domain W3C validator