| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brrelex1i | Unicode version | ||
| Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| brrelexi.1 |
|
| Ref | Expression |
|---|---|
| brrelex1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 |
. 2
| |
| 2 | brrelex1 4703 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 |
| This theorem is referenced by: nprrel 4709 vtoclr 4712 opeliunxp2 4807 ideqg 4818 issetid 4821 fvmptss2 5639 opeliunxp2f 6305 brtpos2 6318 brdomg 6816 ctex 6821 isfi 6829 en1uniel 6872 xpdom2 6899 xpdom1g 6901 xpen 6915 isbth 7042 djudom 7168 cc3 7351 aprcl 8690 climcl 11464 climi 11469 climrecl 11506 structex 12715 |
| Copyright terms: Public domain | W3C validator |