ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex1i Unicode version

Theorem brrelex1i 4671
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.)
Hypothesis
Ref Expression
brrelexi.1  |-  Rel  R
Assertion
Ref Expression
brrelex1i  |-  ( A R B  ->  A  e.  _V )

Proof of Theorem brrelex1i
StepHypRef Expression
1 brrelexi.1 . 2  |-  Rel  R
2 brrelex1 4667 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
31, 2mpan 424 1  |-  ( A R B  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   _Vcvv 2739   class class class wbr 4005   Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635
This theorem is referenced by:  nprrel  4673  vtoclr  4676  opeliunxp2  4769  ideqg  4780  issetid  4783  fvmptss2  5593  opeliunxp2f  6241  brtpos2  6254  brdomg  6750  ctex  6755  isfi  6763  en1uniel  6806  xpdom2  6833  xpdom1g  6835  xpen  6847  isbth  6968  djudom  7094  cc3  7269  aprcl  8605  climcl  11292  climi  11297  climrecl  11334  structex  12476
  Copyright terms: Public domain W3C validator