Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brrelex2i | Unicode version |
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brrelexi.1 |
Ref | Expression |
---|---|
brrelex2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 | |
2 | brrelex2 4627 | . 2 | |
3 | 1, 2 | mpan 421 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cvv 2712 class class class wbr 3965 wrel 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-xp 4592 df-rel 4593 |
This theorem is referenced by: vtoclr 4634 brdomi 6694 xpdom2 6776 xpdom1g 6778 mapdom1g 6792 djudom 7037 difinfsn 7044 enomnilem 7081 enmkvlem 7104 enwomnilem 7112 djuenun 7147 aprcl 8521 hashinfom 10652 clim 11178 ntrivcvgap0 11446 |
Copyright terms: Public domain | W3C validator |