ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex2i Unicode version

Theorem brrelex2i 4630
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
brrelexi.1  |-  Rel  R
Assertion
Ref Expression
brrelex2i  |-  ( A R B  ->  B  e.  _V )

Proof of Theorem brrelex2i
StepHypRef Expression
1 brrelexi.1 . 2  |-  Rel  R
2 brrelex2 4627 . 2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
31, 2mpan 421 1  |-  ( A R B  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128   _Vcvv 2712   class class class wbr 3965   Rel wrel 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4592  df-rel 4593
This theorem is referenced by:  vtoclr  4634  brdomi  6694  xpdom2  6776  xpdom1g  6778  mapdom1g  6792  djudom  7037  difinfsn  7044  enomnilem  7081  enmkvlem  7104  enwomnilem  7112  djuenun  7147  aprcl  8521  hashinfom  10652  clim  11178  ntrivcvgap0  11446
  Copyright terms: Public domain W3C validator