ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex2i Unicode version

Theorem brrelex2i 4699
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
brrelexi.1  |-  Rel  R
Assertion
Ref Expression
brrelex2i  |-  ( A R B  ->  B  e.  _V )

Proof of Theorem brrelex2i
StepHypRef Expression
1 brrelexi.1 . 2  |-  Rel  R
2 brrelex2 4696 . 2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
31, 2mpan 424 1  |-  ( A R B  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   _Vcvv 2760   class class class wbr 4029   Rel wrel 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4661  df-rel 4662
This theorem is referenced by:  vtoclr  4703  brdomi  6794  xpdom2  6876  xpdom1g  6878  mapdom1g  6894  djudom  7142  difinfsn  7149  enomnilem  7187  enmkvlem  7210  enwomnilem  7218  djuenun  7262  aprcl  8655  hashinfom  10839  clim  11414  ntrivcvgap0  11682
  Copyright terms: Public domain W3C validator