ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex2i Unicode version

Theorem brrelex2i 4685
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
brrelexi.1  |-  Rel  R
Assertion
Ref Expression
brrelex2i  |-  ( A R B  ->  B  e.  _V )

Proof of Theorem brrelex2i
StepHypRef Expression
1 brrelexi.1 . 2  |-  Rel  R
2 brrelex2 4682 . 2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
31, 2mpan 424 1  |-  ( A R B  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160   _Vcvv 2752   class class class wbr 4018   Rel wrel 4646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4647  df-rel 4648
This theorem is referenced by:  vtoclr  4689  brdomi  6770  xpdom2  6852  xpdom1g  6854  mapdom1g  6870  djudom  7117  difinfsn  7124  enomnilem  7161  enmkvlem  7184  enwomnilem  7192  djuenun  7236  aprcl  8628  hashinfom  10785  clim  11316  ntrivcvgap0  11584
  Copyright terms: Public domain W3C validator