ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex2i Unicode version

Theorem brrelex2i 4648
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
brrelexi.1  |-  Rel  R
Assertion
Ref Expression
brrelex2i  |-  ( A R B  ->  B  e.  _V )

Proof of Theorem brrelex2i
StepHypRef Expression
1 brrelexi.1 . 2  |-  Rel  R
2 brrelex2 4645 . 2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
31, 2mpan 421 1  |-  ( A R B  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   _Vcvv 2726   class class class wbr 3982   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611
This theorem is referenced by:  vtoclr  4652  brdomi  6715  xpdom2  6797  xpdom1g  6799  mapdom1g  6813  djudom  7058  difinfsn  7065  enomnilem  7102  enmkvlem  7125  enwomnilem  7133  djuenun  7168  aprcl  8544  hashinfom  10691  clim  11222  ntrivcvgap0  11490
  Copyright terms: Public domain W3C validator