ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex2i Unicode version

Theorem brrelex2i 4655
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
brrelexi.1  |-  Rel  R
Assertion
Ref Expression
brrelex2i  |-  ( A R B  ->  B  e.  _V )

Proof of Theorem brrelex2i
StepHypRef Expression
1 brrelexi.1 . 2  |-  Rel  R
2 brrelex2 4652 . 2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
31, 2mpan 422 1  |-  ( A R B  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   _Vcvv 2730   class class class wbr 3989   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618
This theorem is referenced by:  vtoclr  4659  brdomi  6727  xpdom2  6809  xpdom1g  6811  mapdom1g  6825  djudom  7070  difinfsn  7077  enomnilem  7114  enmkvlem  7137  enwomnilem  7145  djuenun  7189  aprcl  8565  hashinfom  10712  clim  11244  ntrivcvgap0  11512
  Copyright terms: Public domain W3C validator