| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brrelex2i | Unicode version | ||
| Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brrelexi.1 |
|
| Ref | Expression |
|---|---|
| brrelex2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 |
. 2
| |
| 2 | brrelex2 4760 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 |
| This theorem is referenced by: vtoclr 4767 brdomi 6898 xpdom2 6990 xpdom1g 6992 mapdom1g 7008 djudom 7260 difinfsn 7267 enomnilem 7305 enmkvlem 7328 enwomnilem 7336 djuenun 7394 aprcl 8793 hashinfom 11000 clim 11792 ntrivcvgap0 12060 |
| Copyright terms: Public domain | W3C validator |